MEMORIZATION REFERENCE SHEET FOR GEOMETRY EOC

TOOLS OF GEOMETRY

Midpoint Formula
$$=$$
 $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ Distance Formula $d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$

Complementary Angles: ∠'s that add to 90° Supplementary Angles: ∠'s that add to 180°

Vertical Angles: Two angles whose sides are opposite rays. They make an "x" and are \cong .

Adjacent Angles: Two angles with common side, common vertex, no common points.

Linear Pair: Two angles that share a ray and are supplementary

REASONING AND PROOF

Contrapositive: change order and add "nots"

Symmetric Property of Congruence/Equality: Switch order Ex: If $\angle A \cong \angle B$, then $\angle B \cong \angle A$

Reflexive Property of Congruence/Equality: Same on both sides Ex: $\overline{AB} \cong \overline{AB}$

Transitive Property of Congruence/Equality: If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$

LINES AND ANGLES

Parallel Lines have = slopes Perpendicular Lines have opposite reciprocal slopes

If $l \parallel m$,

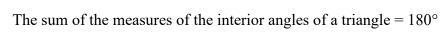
Corresponding angles (congruent): $\angle 1$ and $\angle 5$, $\angle 3$ and $\angle 7$

 $\angle 2$ and $\angle 6$, $\angle 4$ and $\angle 8$

Alternative Interior Angles (congruent): $\angle 3$ and $\angle 6$, $\angle 4$ and $\angle 5$

Alternate Exterior Angles (congruent): ∠1 and ∠8, ∠2 and ∠7

Same-Side Interior Angles (supplementary): $\angle 3$ and $\angle 5$, $\angle 4$ and $\angle 6$



The measure of the exterior angle of a triangle = the sum of the two remote interior angles.

Slope Intercept Form: y = mx + b **Point-Slope Form**: $y - y_1 = m(x - x_1)$

Slope Formula: $m = \frac{y_2 - y_1}{x_2 - x_1}$

CONGRUENT TRIANGLES

Congruent Triangle Theorems ⇒ SSS, ASA, SAS, AAS, and HL (there is no rule for SSA or AA)

Use **CPCTC** only after proving two triangles congruent.

Isosceles Triangles – two equal legs ⇔two equal base angles

RELATIONSHIPS WITHIN TRIANGLES

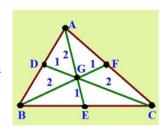
Triangle Midsegment Theorem: $2(Midsegment) = Base or \frac{1}{2}(Base) = Midsegment$

Points of Concurrency: Perpendicular Bisectors: Circumcenter Angle Bisectors: Incenter

Medians: Centroid Altitudes: Orthocenter

Centroid Formula: 2(short) = long or 3(short) = whole

Triangle Inequality: the sum of the lengths of the small and medium sides of a triangle is greater than the length of the large side.

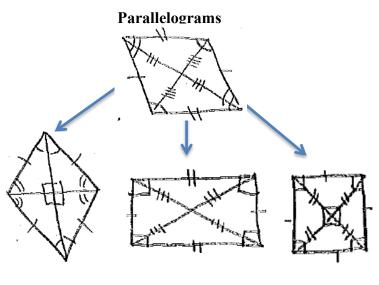


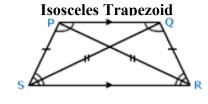
POLYGONS AND QUADRILATERLAS

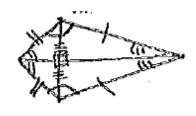
The sum of the measures of the interior angles in a quadrilateral is 360°

Sum of interior angles of polygon: (n-2)180 Exterior angle and central angle = $\frac{360}{n}$

Measure of each interior angle of a polygon: $\frac{(n-2)180}{n}$ Midsegment of a Trapezoid = $\frac{b_1+b_2}{2}$







Rhombus Rectangle Square

SIMILARITY

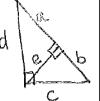
Similar polygons have congruent angles and proportional side lengths.

Three ways to prove triangles similar: AA ~, SAS ~, and SSS ~ (there is no SSA).

Geometric mean = $\frac{a}{x} = \frac{x}{b}$, so $ab = x^2$ where x is the means position of the formula.

Altitude of a right triangle: $\frac{segment\ of\ hypotenuse}{altitude} = \frac{altitude}{other\ segment\ of\ hypotenuse}$

Leg of a right triangle: $\frac{whole \ hypotenuse}{leg} = \frac{leg}{part \ of \ hypotenuse \ closest \ to \ leg}$ Altitude: $\frac{e}{a} = \frac{b}{e}$ Leg: $\frac{a+b}{c} = \frac{c}{d}$ or $\frac{a+b}{d} = \frac{d}{a}$



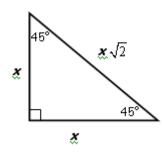
RIGHT TRIANGLES AND TRIGONOMETRY

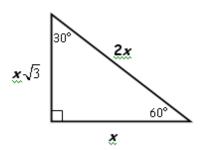
Pythagorean Theorem = $c^2 = a^2 + b^2$...this also can be used to prove a right triangle

Acute Triangle: $c^2 < a^2 + b^2$

Obtuse Triangle: $c^2 > a^2 + b^2$

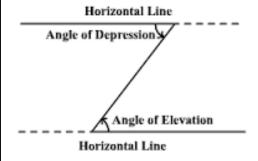
Special Right Triangles:





Trigonometric Ratios: $sin \angle A = \frac{opposite}{hypotenuse}$ $cos \angle A = \frac{adjacent}{hypotenuse}$ $tan \angle A = \frac{opposite}{adjacent}$

Regular buttons on calc to find side lengths. Inverse buttons (sin⁻¹, cos⁻¹, tan⁻¹) to find angle measures



TRANSFORMATIONS

Rotations:

Reflections:

Dilations:

$$r_{90}(x,y) \rightarrow (-y,x)$$

$$R_{x-axis}(x,y) \rightarrow (x,-y)$$

$$D_{k}(x,y) \rightarrow (k \cdot x, k \cdot y)$$

$$r_{180}(x,y) \rightarrow (-x,-y)$$

$$R_{y-axis}(x,y) \rightarrow (-x,y)$$

$$r_{270}(x,y) \rightarrow (y,-x)$$

$$R_{v=x}(x,y) \rightarrow (y,x)$$

$$T_{a,b}(x,y) \rightarrow (x+a,y+b)$$

$$r_{360}(x,y) \rightarrow (x,y)$$

$$R_{y=-x}(x,y) \rightarrow (-y,-x)$$

<u>Compositions</u>: Remember always do the second transformation listed first Ex: $(r_{90,0} \circ R_{p=x})(\Delta JKL)$

AREA: s = side length

Perimeter of Square: P = 4s

$$b = base length$$

$$h = height$$

$$d = diagonal$$

Perimeter any shape: Add all sides Circumference: $C = 2\pi r$ or πd

$$r = radius$$
 $d = diameter$

$$d = diamete$$

Area of Square: $A = s^2$

Area of Rectangle: A = bh

Area of Parallelogram: A = bh

Area of a Triangle: $A = \frac{1}{2}bh$ Area of a Rhombus: $A = \frac{1}{2}(d_1 \cdot d_2)$ Area of a Kite: $A = \frac{1}{2}(d_1 \cdot d_2)$

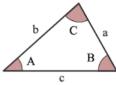
Area of a Trapezoid: $A = \frac{1}{2}h(b_1 + b_2)$

Area of Circle: $A = \pi r^2$

Area of a Regular Polygon: $A = \frac{1}{2}ap$ where a = apothem length and p = perimeter of the polygon

* Use special right triangles or trig ratios to find the apothem, radius, or side length in a reg polygon.

Area of a Triangle given SAS: $A = \frac{1}{2}ab(sinC)$



SURFACE AREA AND VOLUME:

p = perimeter of base, B = area of base, h = height of figure, l = slant height r = radius

Eulers Formula = Faces + Vertices = Edges + 2

Lateral Area for Prisms, Cylinders, Pyramids, and Cones is first part of Surface Area formula

SA of Prism: SA = ph + 2B

SA of Cylinder: $2\pi rh + 2\pi r^2$ SA of Pyramid: $SA = \frac{1}{2}pl + B$

SA of Cone: $\pi r l + \pi r^2$

SA of Sphere: $SA = 4\pi r^2$

Volume of Prism: V = Bh

Volume of Cylinder: $V = \pi r^2 h$ Volume of Pyramid: $V = \frac{1}{2}Bh$

Volume of Cone: $V = \frac{1}{3}\pi r^2 h$ Volume of Sphere: $V = \frac{4}{3}\pi r^3$

Ratios of Similar Figures:

Scale Factor/Perimeter Ratio: $\frac{a}{h}$ Area/Surface Area Ratio: $\frac{a^2}{h^2}$ Volume Ratio: $\frac{a^3}{h^3}$

CIRCLES

Central Angle = angle measure that includes the center of the circle.

Semicircle =
$$180^{\circ}$$

Major Arc
$$> 180^{\circ}$$

Arc Measure = measure of central angle **Concentric Circles**: two circles that share a center point

Arc Length =
$$\frac{m\widehat{AB}}{360} \cdot 2\pi r$$

Area Sector (slice of pizza) =
$$\frac{m\widehat{AB}}{360} \cdot \pi r^2$$

Area of Segment (crust of the pizza slice) = Area of Sector – Area of Triangle = $\frac{m\widehat{AB}}{360} \cdot \pi r^2 = \frac{1}{2}bh$

Tangent Line: Line that intersects the circle at exactly one point and is perpendicular to the radius.

Chord: a segment whose endpoints are on the circle **Secant** = line that intersects a circle at 2 points

Circle Angle Formulas:

Inscribed Angle =
$$\frac{\text{measure of arc}}{2}$$

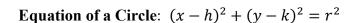
Inside Angle (intersection two chords) =
$$\frac{\text{add arcs}}{2}$$
 Outside Angle = $\frac{\text{subtract arcs}}{2}$

Circle Segment Formulas:

Intersecting Chords = (seg piece
$$\cdot$$
 seg piece) = (seg piece \cdot seg piece)

Two Secants = (whole secant \cdot part outside circle) = (whole secant \cdot part outside circle)

Secant – Tangent = (whole secant \cdot part outside circle) = tangent²



$$r = radius$$

$$center = (h, k)$$

point on circle =
$$(x, y)$$