Module 7 Quadrilaterals

Tuesday, April 08, 2025 12:09 AM

Click link below for interactive Pear Deck PowerPoint Lesson:

https://app.peardeck.com/student/twyuywfod

Quadrilater...

Module 7: Quadrilaterals Geometry

Content Objective

Students apply and prove theorems about the properties of parallelograms.

Students use the properties of rectangles to determine whether a parallelogram is a rectangle and to write proofs.

Students apply and prove the properties of rhombi and squares.

Students recognize and apply the properties of trapezoids and kites.

MA.912.GR.1.4

Prove relationships and theorems about parallelograms. Solve mathematical and real-world problems involving postulates, relationships and theorems of parallelograms.

MA.912.GR. 3.2

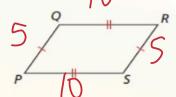
Given a mathematical context, use coordinate geometry to classify or justify definitions, properties and theorems involving circles, triangles or quadrilaterals.

MA.912.GR.3.3

Use coordinate geometry to solve mathematical and real-world geometric problems involving lines, circles, triangles and quadrilaterals.

MA.912.GR.1.5

Prove relationships and theorems about trapezoids. Solve mathematical and real-world problems involving postulates, relationships and theorems of trapezoids.

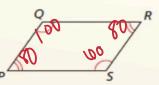

6 Theorems

Theorem 7.3 Parallelogram Opposite Sides Theorem

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

If PQRS is a parallelogram, then $\overline{PQ} \cong \overline{RS}$ and $\overline{QR} \cong \overline{SP}$.

Proof p. 368



Theorem 7.4 Parallelogram Opposite Angles Theorem

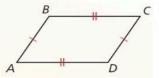
If a quadrilateral is a parallelogram, then its opposite angles are congruent.

If PQRS is a parallelogram, then $\angle P \cong \angle R$ and $\angle Q \cong \angle S$.

Proof Ex. 37, p. 373

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

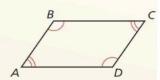


6 Theorems

Theorem 7.7 Parallelogram Opposite Sides Converse

If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$, then ABCD is a parallelogram.



Theorem 7.8 Parallelogram Opposite Angles Converse

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then ABCD is a parallelogram.

Proof Ex. 39, p. 383

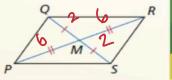
G Theorems

Theorem 7.5 Parallelogram Consecutive Angles Theorem

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

If *PQRS* is a parallelogram, then $x^{\circ} + y^{\circ} = 180^{\circ}$.

Proof Ex. 38, p. 373



Theorem 7.6 Parallelogram Diagonals Theorem

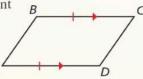
If a quadrilateral is a parallelogram, then its diagonals bisect each other.

If PQRS is a parallelogram, then $\overline{QM} \cong \overline{SM}$ and $\overline{PM} \cong \overline{RM}$.

Proof p. 370

Students, draw anywhere on this slide!

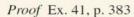
Pear Deck Interactive Slide Do not remove this bar


G Theorems

Theorem 7.9 Opposite Sides Parallel and Congruent Theorem

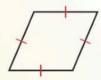
If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.

If $\overline{BC} \parallel \overline{AD}$ and $\overline{BC} \cong \overline{AD}$, then ABCD is a parallelogram.

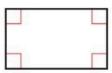

Proof Ex. 40, p. 383

Theorem 7.10 Parallelogram Diagonals Converse

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.



Pear Deck Interactive Slide Do not remove this bar



Rhombuses, Rectangles, and Squares

A rhombus is a parallelogram with four congruent sides.

A rectangle is a parallelogram with four right angles.

A **square** is a parallelogram with four congruent sides and four right angles.

Students, draw anywhere on this slide!

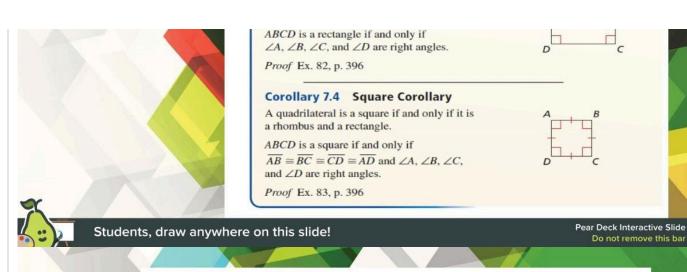
Pear Deck Interactive Slide Do not remove this bar

Corollary 7.2 Rhombus Corollary

A quadrilateral is a rhombus if and only if it has four congruent sides.

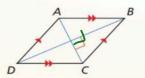
ABCD is a rhombus if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$.

Proof Ex. 81, p. 396



Corollary 7.3 Rectangle Corollary

A quadrilateral is a rectangle if and only if it has four right angles.

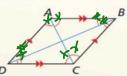


Theorem 7.11 Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular

 $\Box ABCD$ is a rhombus if and only if $\overline{AC} \perp \overline{BD}$.

Proof p. 390; Ex. 72, p. 395



Theorem 7.12 Rhombus Opposite Angles Thoerem

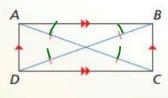
A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

 $\square ABCD$ is a rhombus if and only if \overline{AC} bisects $\angle BCD$ and $\angle BAD$, and \overline{BD} bisects $\angle ABC$ and $\angle ADC$.

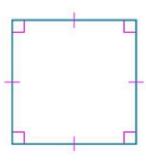
Proof Exs. 73 and 74, p. 395

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar


3 Theorem

Theorem 7.13 Rectangle Diagonals Theorem


A parallelogram is a rectangle if and only if its diagonals are congruent.

 $\square ABCD$ is a rectangle if and only if $\overline{AC} \cong \overline{BD}$.

Proof Exs. 87 and 88, p. 396

A **square** is a parallelogram with all four sides and all four angles congruent. All of the properties of parallelograms, rectangles, and rhombi apply to squares. For example, the diagonals of a square bisect each other (parallelogram), are congruent (rectangle), and are perpendicular (rhombus).

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Theorem 7.17

If the diagonals of a parallelogram are perpendicular, then the parallelogram is a solution of the parallelogram is a solution of the parallelogram are perpendicular, then the

Theorem 7.18

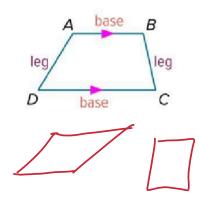
If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a $\frac{1}{2}$

Theorem 7.19

If two consecutive sides of a parallelogram are congruent, then the parallelogram is a

Theorem 7.20

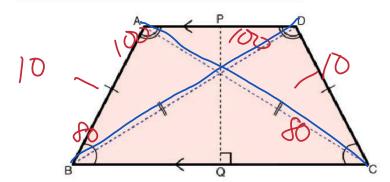
If a quadrilateral is both a rectangle and a rhombus, then it is a


Students, draw anywhere on this slide!

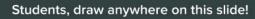
Pear Deck Interactive Slide
Do not remove this bar

A **trapezoid** is a quadrilateral with at least one pair of parallel sides. In a trapezoid that is not a parallelogram, the parallel sides are called the **bases** and the nonparallel sides are called **legs**.

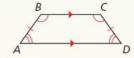
A **base angle** is formed by a base and a leg. In trapezoid ABCD, $\angle A$ and $\angle B$ are one pair of base angles, and $\angle C$ and $\angle D$ are the other pair. If the legs are congruent, then a trapezoid is an **isosceles trapezoid**.



Properties of an Isosceles Trapezoid


- ① Has one pair of parallel and unequal opposite sides (bases)
- ② Has one pair of congruent non-parallel sides (legs)
- 3 Lower base angles & upper base angles are congruent

6 Has one line of symmetry connecting the bases at their midpoints


Pear Deck Interactive Slide Do not remove this bar

Theorem 7.14 Isosceles Trapezoid Base Angles Theorem

If a trapezoid is isosceles, then each pair of base angles is congruent.

If trapezoid *ABCD* is isosceles, then $\angle A \cong \angle D$ and $\angle B \cong \angle C$.

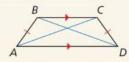
Proof Ex. 39, p. 405

Theorem 7.15 Isosceles Trapezoid Base Angles Converse

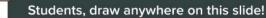
If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid ABCD is isosceles.

Proof Ex. 40, p. 405



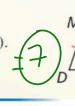
ineorem 7.16 isosceles irapezoid Diagonais ineorem

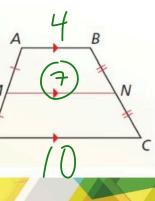

A trapezoid is isosceles if and only if its diagonals are congruent.

Trapezoid ABCD is isosceles if and only if $\overline{AC} \cong \overline{BD}$.

Proof Ex. 51, p. 406

5 Theorem


Theorem 7.17 Trapezoid Midsegment Theorem


The midsegment of a trapezoid is parallel to each base, and its length is one-half the sum of the lengths of the bases.

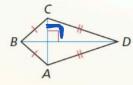
If \overline{MN} is the midsegment of trapezoid ABCD,

then $\overline{MN} \parallel \overline{AB}, \overline{MN} \parallel \overline{DC}$, and $\overline{MN} = \frac{1}{2}(AB + CD)$.

Proof Ex. 49, p. 406

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

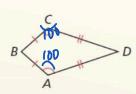

G Theorems

Theorem 7.18 Kite Diagonals Theorem

If a quadrilateral is a kite, then its diagonals are perpendicular.

If quadrilateral *ABCD* is a kite, then $\overline{AC} \perp \overline{BD}$.

Proof p. 401



Theorem 7.19 Kite Opposite Angles Theorem

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral ABCD is a kite and $\overline{BC} \cong \overline{BA}$, then $\angle A \cong \angle C$ and $\angle B \ncong \angle D$.

Proof Ex. 47, p. 406

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar

Kites

A **kite** is a convex quadrilateral with exactly two distinct pairs of adjacent congruent sides. Unlike a parallelogram, the opposite sides of a kite are not congruent or parallel.

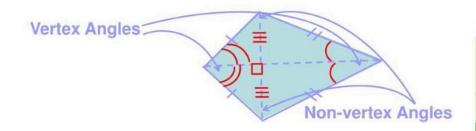
Theorems: Kites
Theorem 7.25

If a quadrilateral is a kite, then its diagonals are perpendicular.

Theorem 7.26

If a quadrilateral is a kite, then exactly one pair of opposite angles is congruent.

Students, draw anywhere on this slide!

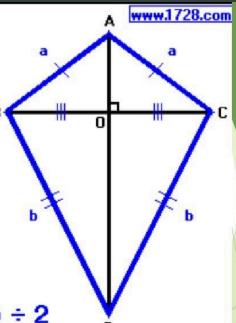

Pear Deck Interactive Slide Do not remove this bar

Properties of Kites and Transzoida Kite:

2 distinct pairs of consecutive congruent sides.

- One diagonal is the \bot bisector of the other.
- · Non-vertex angles are congruent.
- One diagonal bisects both vertex angles.

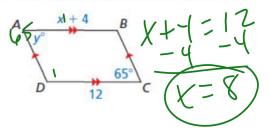
Pear Deck Interactive Slide Do not remove this bar

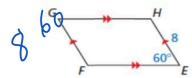

∠A and ∠D are vertex angles.
∠B and ∠C are the non-vertex angles.
Lines AD and BC are diagonals and always meet at right angles.
Line AD, the axis of symmetry, bisects diagonal BC, bisects.
∠A and ∠D and bisects the kite into 2 congruent triangles:
△ABD and △ACD

Side AB = side AC Side BD = side CD

Line OB = Line OC

Diagonal BC bisects the kite into 2 isoceles triangles


Kite Area = $(AD \times BC) \div 2$



*Find all angles and side measures for all problems on this page!

Find the values of x and y.

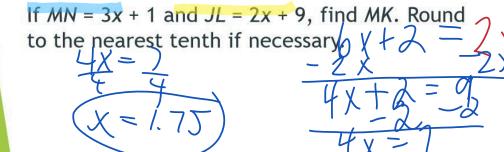
1. Find FG and $m \angle G$.

2. Find the values of x and y

21 Tind the values of x and)

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar


Example 2

Use Properties of Rectangles and Algebra

Check

Quadrilateral JKLM is a rectangle.

Part A

31.5

Example 2

Use Properties of Rectangles and Algebra 21.5

Check

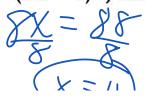
Quadrilateral JKLM is a rectangle. 5X+7+5X-6=1

Part B

find $m \angle JNK$ and $m \angle JNM$. Part C: Find all angle degrees!

Students, draw anywhere on this slide!

Pear Deck Interactive Slide



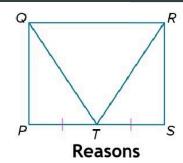
Quadrilateral ABCD is a rectangle.

If
$$m \angle BAC = (3x + 3)^{\circ}$$
 and

 $m \angle ACB = (5x - 1)^{\circ}$, find the value of x.

Sx +
$$2 = 90$$

Pear Deck Interactive Slide Do not remove this bar



Example 3

Prove Rectangular Relationships

Given: PQRS is a rectangle; $\overline{PT} \cong \overline{ST}$.

Prove: $\overline{QT} \cong \overline{RT}$

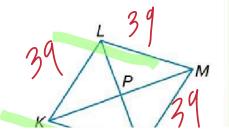
Statements

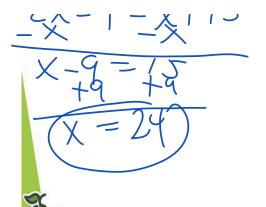
- **1.** PQRS is a rectangle; $\overline{PT} \cong \overline{ST}$
- 2. PQRS is a parallelogram
- 3.
- 5. $\angle S \cong \angle P$
- 6.
- 7.

- 1. Given
- 2. Definition of rectangle
- **3.** Opp. sides of a \square are \cong .
- 4. Definition of rectangle
- 5. All right angles are congruent.
- 6. SAS
- 7. CPCTC

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar



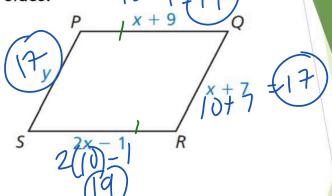

7(24)-9 24+15

If LM = 2x - 9 and KN = x + 15 in rhombus KLMN, find the value of x.

Find all side lengths!

 $g - V \perp I \subset$

39 N

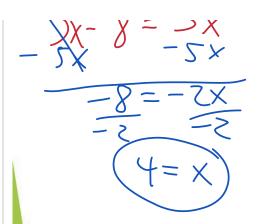

Students, draw anywhere on this slide!

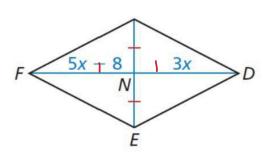
Pear Deck Interactive Slide Do not remove this bar

For what values of x and y is quadrilateral PQRS a parallelogram?

Find the lengths of all the sides.

$$\frac{9=\times-1}{10=\times}$$

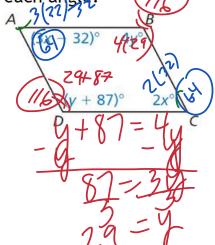



Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

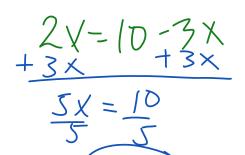
For what value of x is quadrilateral CDEF a parallelogram?

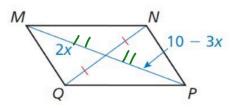
Pear Deck Interactive Slide Do not remove this bar



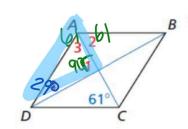
For what values of x and y is quadrilateral ABCD a parallelogram?

Determine the measures of each angle.


$$\frac{2x-32-2x}{-3x}$$


$$\frac{-32=-1x}{32=x}$$

For what value of x is quadrilateral \emph{MNPQ} a parallelogram?



Students, draw anywhere on this slide!

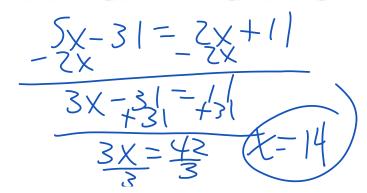
Pear Deck Interactive Slide
Do not remove this bar

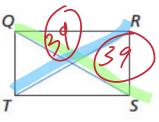
Find the measures of the numbered angles in rhombus $\mbox{\it ABCD}$.

Pear Deck Interactive Slide Do not remove this bar

Find the measures of the numbered angles in rhombus *DEFG* .

$$\frac{180}{62} = 31$$




Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

In rectangle QRST, QS = 5x - 31 and RT = 2x + 11. Find the lengths of the diagonals of QRST.

