Wednesday, April 02, 2025 10:25 PM

Click link below for interactive Pear Deck PowerPoint Lesson:

https://app.peardeck.com/student/tdfpgtxaa

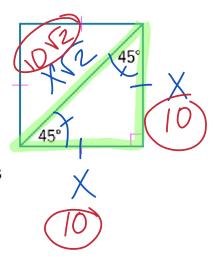
Lesson 9.2 Special Right Triangles Workbook Pages 135-137

MA.912.T.1.2

Solve mathematical and real-world problems involving right triangles using trigonometric ratios and the Pythagorean Theorem.

Content Objective

Students will solve problems by using the properties of $45^{\circ} - 45^{\circ} - 90^{\circ}$ and $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangles.

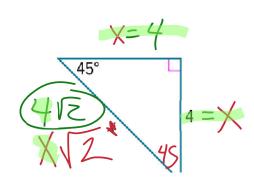


Learn

 $45^{\circ} - 45^{\circ} - 90^{\circ}$ Triangles

The diagonal of a square forms two congruent isosceles right triangles. Because the base angles of an isosceles triangle are congruent, the measure of each acute angle is 90°÷2 or 45°. Such a special right triangle is known as a 45° – 45° – 90° triangle.

In a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle, the legs ℓ are congruent and the length of the hypotenuse h is $\sqrt{2}$ times the length of a leg.


McGraw Hill | Special Right Triangles

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

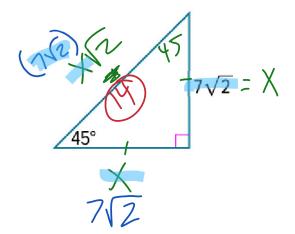
Example 1

Find the Hypotenuse Length Given an Angle Measure

Find the value of **K**.

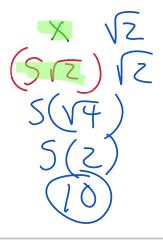
This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

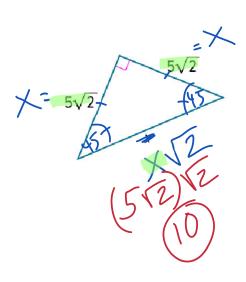
Example 1


Find the Hypotenuse Length Given an Angle Measure

Check

Find the value of an





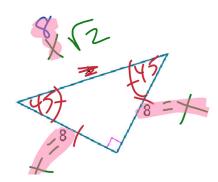
Example 2

Find the Hypotenuse Length Given a Side Measure

Find the value of 3.

McGraw Hill | Special Right Triangles

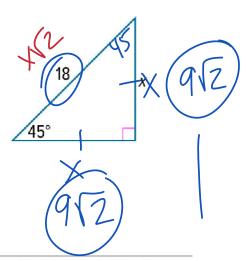
This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.


Example 2

Find the Hypotenuse Length Given a Side Measure

Check

Find the value of **.

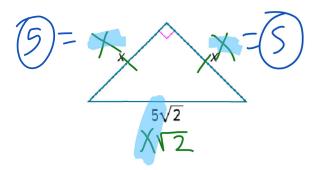

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 3

Find Leg Lengths in a $45^{\circ} - 45^{\circ} - 90^{\circ}$ Triangle

Find the value of x.

$$\frac{18}{12} = \frac{18}{12} \cdot \frac{12}{12} = \frac{18}{2}$$


This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

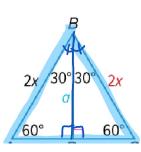
Example 3

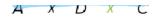
Find Leg Lengths in a $45^{\circ} - 45^{\circ} - 90^{\circ}$ Triangle

Check

Find the value of x.

McGraw Hill | Special Right Triangles


This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.


Learn

 $30^{\circ} - 60^{\circ} - 90^{\circ}$ Triangles

A 30° – 60° – 90° triangle is a special right triangle or right triangle with side lengths that share a special relationship. You can use an equilateral triangle to find this relationship.

When an altitude is drawn from any vertex of an equilateral triangle, two congruent $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangles are formed. In the figure,

 $\triangle ABD \cong \triangle CBD$, so $\overline{AD} \cong \overline{CD}$. If AD = x, then CD = x and AC = 2x. Because $\triangle ABC$ is equilateral, AB = 2x and BC = 2x.

(continued on the next slide)

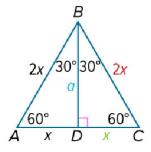
McGraw Hill | Special Right Triangles

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Learn

 $30^{\circ} - 60^{\circ} - 90^{\circ}$ Triangles

Use the Pythagorean Theorem to find a, the length of the altitude \overline{BD} , which is also the longer leg of $\triangle BDC$.


$$a^{2} + x^{2} = (2x)^{2}$$

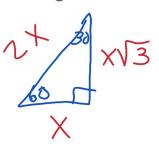
$$0^{2} + x^{2} = 4 \times 2$$

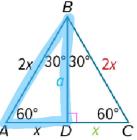
$$-x^{2} - x^{2}$$

$$\sqrt{3} \times 3$$

Pythagorean Theorem Simplify.
Subtract x^2 from each side. Simplify.

McGraw Hill | Special Right Triangles


This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

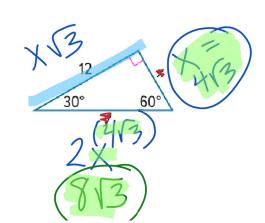


$30^{\circ} - 60^{\circ} - 90^{\circ}$ Triangles

Theorem 9.6: $30^{\circ} - 60^{\circ} - 90^{\circ}$ Triangle Theorem

In a $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle, the length of the hypotenuse h is 2 times the length of the shorter leg s, and the longer leg ℓ is $\sqrt{3}$ times the length of the shorter leg.

McGraw Hill | Special Right Triangles


This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 4

Find Leg Lengths in a $30^{\circ} - 60^{\circ} - 90^{\circ}$ Triangle

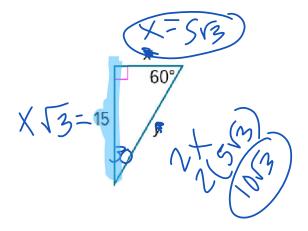
Find the values of **x** and **y**.

$$\frac{2\sqrt{3}}{\sqrt{3}} = \frac{12\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

McGraw Hill | Special Right Triangles

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 4


Find Leg Lengths in a $30^{\circ} - 60^{\circ} - 90^{\circ}$ Triangle

Check

Find the values of ₹ and ₹.

$$\frac{15}{\sqrt{3}} = \frac{15}{\sqrt{3}} = \frac{15}{3}$$

$$\sqrt{3} = 5\sqrt{3}$$

