Click link below for interactive Pear Deck PowerPoint Lesson:

https://app.peardeck.com/student/tyxraasfu

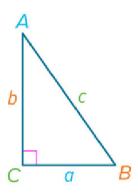
MA.912.T.1.1

Define trigonometric ratios for acute angles in right triangles.

Content Objective

Students will solve problems using the trigonometric ratios and inverse trigonometric ratios for acute angles.

Learn



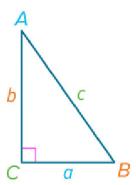
Trigonometry

Key Concept: Trigonometric Ratios

Sine: If $\triangle ABC$ is a right triangle, then the sine of each acute angle in $\triangle ABC$ is the ratio of the length of the leg opposite that angle (opp) to the length of the hypotenuse (hyp).

$$\sin A = \frac{\text{opp}}{\text{hyp}} \text{ or } \frac{a}{c}; \sin B = \frac{\text{opp}}{\text{hyp}} \text{ or } \frac{b}{c}$$

McGraw Hill | Trigonometry

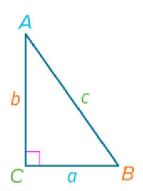

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Learn

Trigonometry

Cosine: If $\triangle ABC$ is a right triangle, then the cosine of each acute angle in $\triangle ABC$ is the ratio of the length of the leg adjacent to that angle (adj) to the length of the hypotenuse (hyp).

$$\cos A = \frac{\text{adj}}{\text{hyp}} \text{ or } \frac{b}{c}; \cos B = \frac{\text{adj}}{\text{hyp}} \text{ or } \frac{a}{c}$$



Learn

Trigonometry

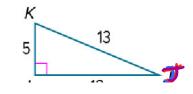
Tangent: If $\triangle ABC$ is a right triangle, then the tangent of each acute angle in $\triangle ABC$ is the ratio of the length of the leg opposite that angle (opp) to the length of the leg adjacent to that angle (adj).

$$\tan A = \frac{\text{opp}}{\text{adj}} \text{ or } \frac{a}{b}; \tan B = \frac{\text{opp}}{\text{adj}} \text{ or } \frac{b}{a}$$

McGraw Hill | Trigonometry

This material may be reproduced for licensed classroom use

Example 1


Find Trigonometric Ratios

Find $\sin J$, $\cos J$, $\tan J$, $\sin K$, $\cos K$, and tan K. Express each ratio as a fraction and as a decimal to the nearest hundredth.

$$tan = \frac{adj}{adj} tan J \frac{12}{13} = 0.12 tan K \frac{13}{5} = 2.4$$

McGraw Hill | Trigonometry

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 3

Estimate Measures by Using Trigonometry

ACCESSIBILITY Mathias builds a ramp so his sister can access the back door of their house. The 12-foot ramp to the house slopes upward from the ground of the at a 4° angle. What is the horizontal distance between the foot of the ramp and the house? What is the height of

 $S = \frac{4^{\circ}}{4^{\circ}}$ Adj Adj Adj Adj Adj Adj Adj Adj Adj Adj

(2)((054) = X 11.97 = X

JDA

McGraw Hill | Trigonometry

the ramp?

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Learn

Inverse Trigonometric Ratios

Key Concept: Inverse Trigonometric Ratios

Inverse Sine	Inverse Cosine	Inverse Tangent				
Words						
If $\angle A$ is an acute angle and the sine of A is x , then the inverse sine of x is the measure of $\angle A$.	If $\angle A$ is an acute angle and the cosine of A is x , then the inverse cosine of x is the measure of $\angle A$.	If $\angle A$ is an acute angle and the tangent of A is x , then the inverse tangent of x is the measure of $\angle A$.				
Symbols						
If $\sin A = x$, then $\sin^{-1} x = m \angle A$.	If $\cos A = x$, then $\cos^{-1} x = m \angle A$.	If $\tan A = x$, then $\tan^{-1} x = m \angle A$.				

McGraw Hill | Trigonometry

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 4

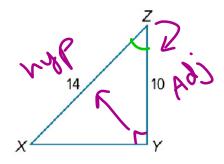
Find Angle Measures by Using Inverse Trigonometric

Ratios

Use a calculator to find $m \angle A$ to the nearest tenth. (05 = A A)

$$Sin^{-1} = \frac{3}{15} + 11.5^{\circ}$$

$$(05^{-1} \frac{3}{15} = 78.5^{\circ}$$

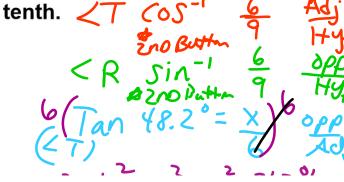

Example 4

Find Angle Measures by Using Inverse Trigonometric Ratios

Check

Use a calculator to find $m \angle Z$ to the nearest tenth.

$$Cos = Adj$$
 Hyp
 $Cos^{-1} = 10 = 44.4^{\circ}$
 $Cos^{-1} = 10 = 44.4^{\circ}$
 $Cos^{-1} = 10 = 44.4^{\circ}$


McGraw Hill | Trigonometry

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 5

Solve a Right Triangle

Solve the right triangle. Round side and angle measures to the nearest

McGraw Hill | Trigonometry

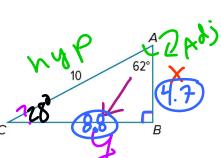
This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 5

Solve a Right Triangle

SOH CAH TOA

Check


Solve the right triangle by finding $m \angle C$, AB, and BC. Round side and angle

measures to the nearest tenth.

AB =
$$(0562 = \frac{2}{10}) \frac{Adj}{Hyp} || (0562) = x_0$$

BC = $(0562 = \frac{2}{10}) \frac{Adj}{Hyp} || (0562) = y_0$

C = $(05 = \frac{8.8}{10}) \frac{Adj}{Hyp} || (0562) = y_0$

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.