Monday, March 3, 2025 10:07 PM

Click link below for interactive Pear Deck PowerPoint Lesson:

https://app.peardeck.com/student/twlvdktiq

From < https://app.peardeck.com/presenter/twlvdktig/projector>

Lesson 6.3 Medians of Triangles

Content Objective

Students solve problems using medians and altitudes in triangles.

Copyright © McGraw Hill

This material may be reproduced for licensed classroonly and may not be further reproduced or district.

Florida's B.E.S.T. Standards for Mathematics

MA.912.GR.1.3 Prove relationships and theorems about triangles. Solve mathematical and real-world problems involving postulates, relationships and theorems of triangles.

MA.912.GR.3.3 Use coordinate geometry to solve mathematical and real-world geometric problems involving

lines simples triangles and guadrilaterals

McGraw Hill | Medians and Altitudes of Triangles

This material may be reproduced for licensed classrules only and may not be further reproduced or dis

Medians of Triangles

In a triangle, a **median** is a line segment with endpoints that are a vertex of the triangle and the midpoint of the side opposite the vertex.

Every triangle has three medians that are concurrent. The point of concurrency of the medians of a triangle is called the **centroid**, and it is always inside the triangle.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Learn

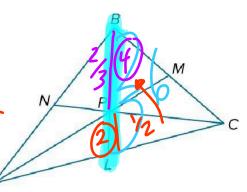
Medians of Triangles

Theorem 6.7: Centroid Theorem

The medians of a triangle intersect at a point called the centroid that is two-thirds of the distance from each vertex to the midpoint of the opposite side.

All polygons have a balancing point or *center of gravity*. This is the point at which the weight of a region is evenly dispersed and all sides of the region are balanced. The centroid is the center of gravity for a triangular region.

Pear Deck Interactive Slide Do not remove this bar


Use the Centroid Theorem

In $\triangle ABC$, P is the centroid and BL = 6.

Find BP and PL.

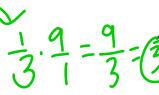
$$\frac{2.6}{3.1} = \frac{12}{3} = 4$$

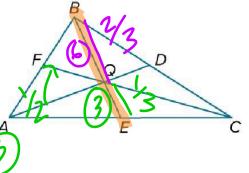
7月1年ままる

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Example 1


Use the Centroid Theorem

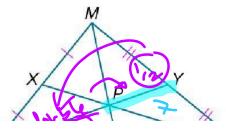

Check

In $\triangle ABC$, Q is the centroid and BE = 9.

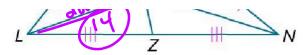
Find BQ and QE.

$$\frac{2}{3} \cdot \frac{9}{1} = \frac{18}{3} = 6$$

Students, draw anywhere on this slide!


Pear Deck Interactive Slide Do not remove this bar

Example 2


Apply the Centroid Theorem

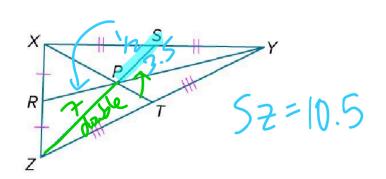
In $\triangle LMN$, PY = 7. Find LP = 14

Ly = 21

$$37371$$
 $y=\frac{1}{3}(21)=\frac{21}{3}=7$

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar



Example 2

Apply the Centroid Theorem

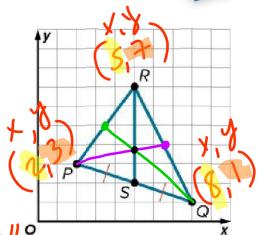
Check

In
$$\triangle XYZ$$
, $SP = 3.5$. Find PZ .

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

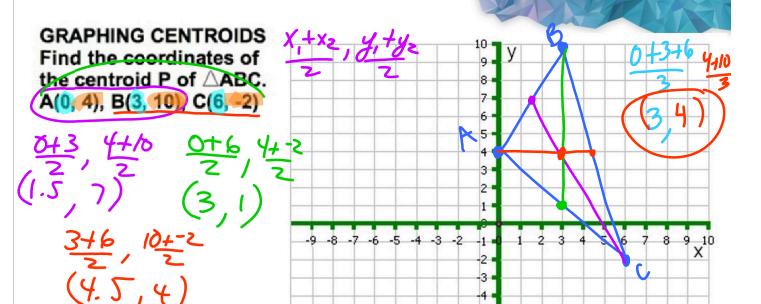
Learn


Medians of Triangles

Think About It!

x,+xz, y,+yz

How could you find the coordinates of the centroid of $\triangle PQR$?

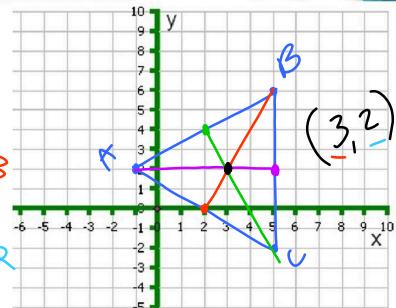


Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

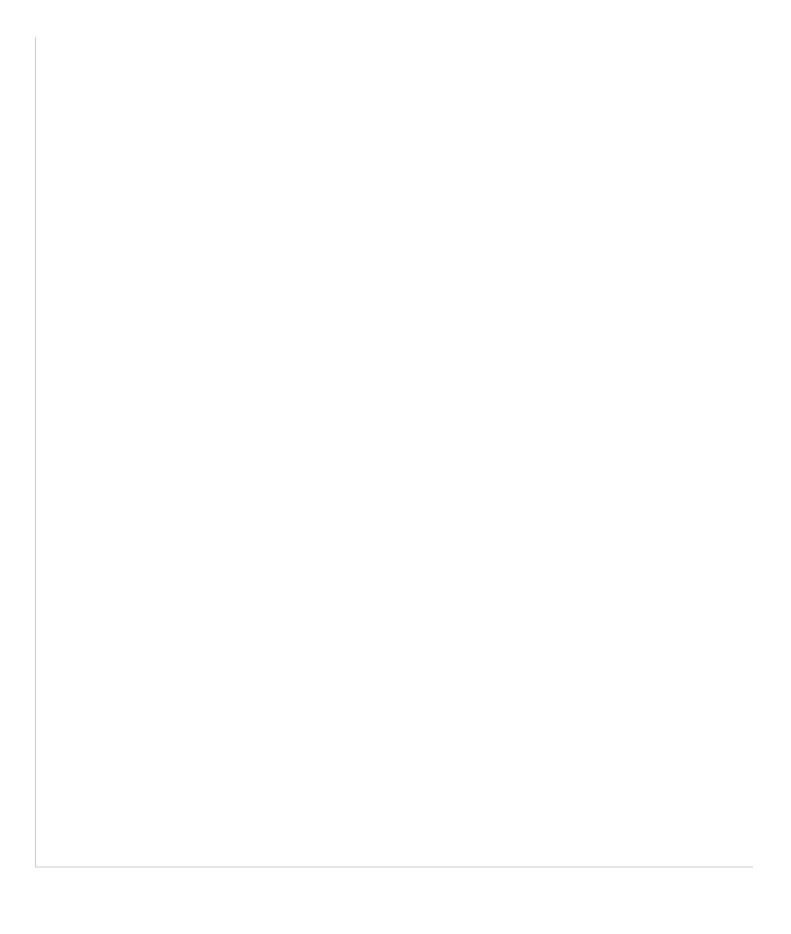
Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar


GRAPHING CENTROIDS Find the coordinates of the

centroid P of ABC.

A(-1, 2), B(5, 6), C(5, -2)


$$\frac{X_1+X_2}{2}$$
, y_1+y_2

$$\frac{-1+5+5}{3} = \frac{9}{3} = 3$$

5

lide #1

