Lesson 6.1 and 6.2 Perpendicular & Angle Bisectors

Wednesday, January 29, 2025 10:00 PM

Click link below for interactive Pear Deck PowerPoint Lesson:

https://app.peardeck.com/student/tkmggdfac

6.1 Perpendicular Bisectors

6.2 Angle Bisectors

Content Objective

Students solve problems using angle bisectors.

Content Objective

Students solve problems using perpendicular bisectors in triangles.

Copyright @ McGraw Hill

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Florida's B.E.S.T. Standards for Mathematics

MA.912.GR.1.1 Prove relationships and theorems about lines and angles. Solve mathematical and real-world problems involving postulates, relationships and theorems of lines and angles.

MA.912.GR.3.3 Use coordinate geometry to solve mathematical and real-world geometric problems involving lines, circles, triangles and quadrilaterals.

MA.912.GR.5.2 Construct the bisector of a segment or an angle, including the perpendicular bisector of a line segment.

McGraw Hill | Perpendicular Bisectors

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed

Learn

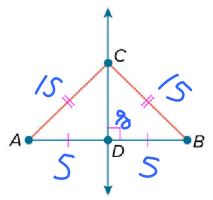
Perpendicular Bisectors of Segments

A **perpendicular bisector** is a line, segment, or ray that passes through the midpoint of a segment and is perpendicular to that segment.

You can use various tools to construct the perpendicular bisector of a segment. To use string, start by wrapping the end of the string around a pencil. Use a thumbtack to fix the string to a point.

McGraw Hill | Perpendicular Bisectors

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.


Learn

Perpendicular Bisectors of Segments

Theorem 6.1: Perpendicular Bisector Theorem

*	•	If a point is on the (Point Compendicular bisector of a segment, then it is equidistant from the
		endpoints of the segment. If \overline{CD} is a \perp bisector of \overline{AB} ,
	ZXumpic	then $AC = BC$.

McGraw Hill | Perpendicular Bisectors

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Learn

Perpendicular Bisectors of Segments

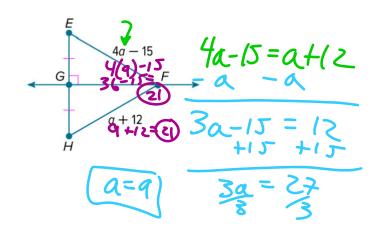
Theorem 6.2: Converse of the Perpendicular Bisector Theorem

	If a point is equidistant from the endpoints of	
	a segment, then it is on the perpendicular	
	bisector of the segment.	
E	In the discussion of access if AO = DO there Olice	

https://teams.microsoft.com/v2/

Example

on the \perp bisector of \overline{AB} .


McGraw Hill | Perpendicular Bisectors

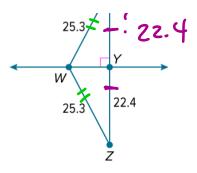
This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 1

Use the Perpendicular Bisector Theorem

McGraw Hill | Perpendicular Bisectors

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.


Example 2

Use the Converse of the Perpendicular Bisector Theorem

Find XY.

McGraw Hill | Perpendicular Bisectors

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Learn

Angle Bisectors

Theorem 6.4: Angle Bisector Theorem

Words	If a point is on the bisector of an angle, then it is equidistant from the sides of the angle.	
Example	If \overrightarrow{BF} bisects $\angle DBE$, $\overrightarrow{FD} \perp \overrightarrow{BD}$, and $\overrightarrow{FE} \perp \overrightarrow{BE}$, then $DF = FE$.	

McGraw Hill | Perpendicular Bisectors

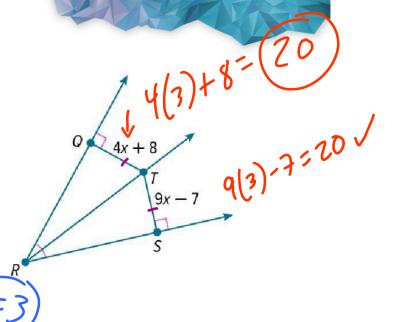
This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Learn

Angle Bisectors

Theorem 6.5: Converse of the Angle Bisector Theorem

Words	If a point in the interior of an angle is equidistant from the sides of the angle, then it is on the bisector of the angle.	
Example	If $\overrightarrow{FD} \perp \overrightarrow{BD}$, $\overrightarrow{FE} \perp \overrightarrow{BE}$, and $DF = FE$, then \overrightarrow{BF} bisects $\angle DBE$.	


McGraw Hill | Perpendicular Bisectors

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 1

Use the Angle Bisector Theorem

 $\frac{4/x + 8 - 9x - 7}{-4/x} - \frac{7}{4} = 5x - 7$

McGraw Hill | Perpendicular Bisectors

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 1

Use the Angle Bisector Theorem

Check

Find SP.

$$3x+5 = 6x - 7$$

$$+7$$

$$-3x+12 = 6x$$

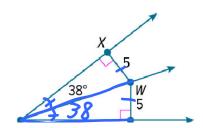
$$-3x$$

$$12 = 3x$$

$$12 = 3x$$

$$1 = 4$$

McGraw Hill | Perpendicular Bisectors


This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 2

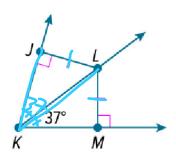
Use the Converse of the Angle Bisector Theorem

Find *m∠ZYW.*

Y

?

McGraw Hill | Perpendicular Bisectors


This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 2

Use the Converse of the Angle Bisector Theorem

Check

Find *m∠JKL*.

McGraw Hill | Perpendicular Bisectors

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.