
w/b pg 158 bottom Check Given that Y is the midpoint of \overline{XZ} and $\overline{XY} \cong \overline{WY}$, write a paragraph proof to show that $\overline{WY} \cong \overline{YZ}$ **Given:** Y is the midpoint of \overline{XZ} ; $\overline{XY} \cong \overline{WY}$ **Prove:** $\overline{WY} \cong \overline{YZ}$ Proof: Because Y is the midpoint of \overline{XZ} , $\overline{WY}\cong \overline{YZ}$ by the Midpoint Theorem $\overline{XY} \cong \overline{WY}$ is given. By the definition of , XY = WY and Congruence XY = YZBy the Symmetric Property of Equality XY = WY can be written as WY = XY. By the **Transitive** Property of Equality, WY = YZ. By the definition of Congruence $\overline{WY} \cong \overline{YZ}$.

What is $m \angle 3$ if $m \angle 1 = 23^{\circ}$ and $m \angle ABC = 131^{\circ}$?

Choose from the reasons provided to justify each step.

$$m \angle 1 + m \angle 2 + m \angle 3 = m \angle ABC$$

mZ1 + mZZ + mZS = mZADC

$$23^{\circ} + 90^{\circ} + m \angle 3 = 131^{\circ}$$

$$113^{\circ} + m \angle 3 = 131^{\circ}$$

$$113^{\circ} + m \angle 3 - 113^{\circ} = 131^{\circ} - 113^{\circ}$$

$$m \angle 3 = 18^{\circ}$$

Angle Addition

Substitution

Substitution

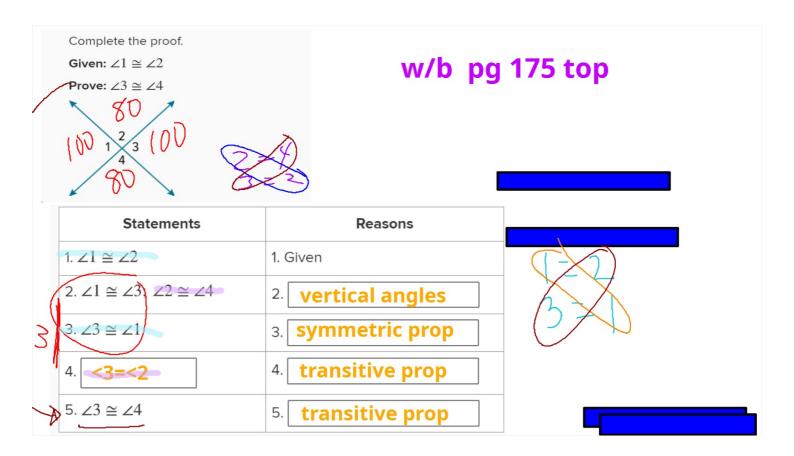
Subtraction

Substitution

w/b pg 174 bottom

Check

Write a paragraph proof.


Given: ∠1 and ∠3 are supplementary.

Prove: $\angle 2 \cong \angle 3$

It is given that $\angle 1$ and $\angle 3$ are supplementary.

By the definition of linear pair, $\angle 1$ and $\angle 2$ are a linear pair. So, by the **Supplement Theorem**, $\angle 1$ and $\angle 2$ are supplementary.

Thus, $\angle 2 \cong \angle 3$ by the Congruent Supplements Theorem.

