1. Six steps of a two-column proof are shown. Copy and complete the proof.

Given T is the midpoint of \overline{SU} .

Prove x = 5

_				
5	7 <i>x</i>	T	3x + 20	Ü

STATEMENTS

1. T is the midpoint of \overline{SU} .

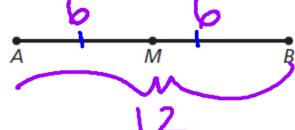
2.
$$\overline{ST} \cong \overline{TU}$$

3.
$$ST = TU$$

4.
$$7x = 3x + 20$$

5.
$$4x = 20$$

6. x = 5


REASONS

- 1. <u>Given</u>
- 2. Definition of midpoint
- 3. Definition of congruent segments
- 4. Substitution Property
- 5. Subtraction Property of Equality
- 6. Division Property

Prove this property of midpoints: If you know that M is the midpoint of \overline{AB} , prove that AB is two times AM and AM is one-half AB.

Given M is the midpoint of \overline{AB} .

Prove
$$AB = \frac{1}{2}AB$$

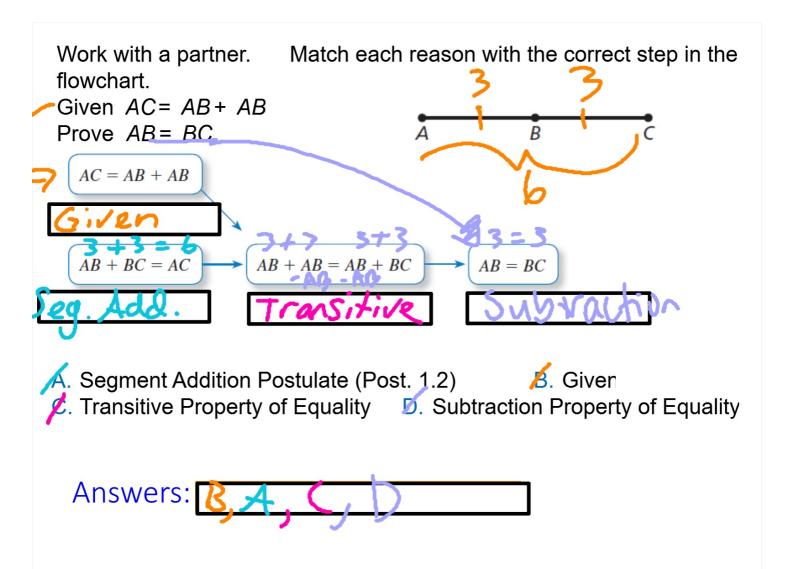
STATEMENTS

1. M is the midpoint of \overline{AB} .

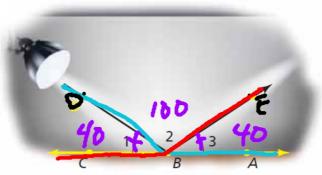
2.
$$\overline{AM} \cong \overline{MB}$$

3.
$$AM = MB$$

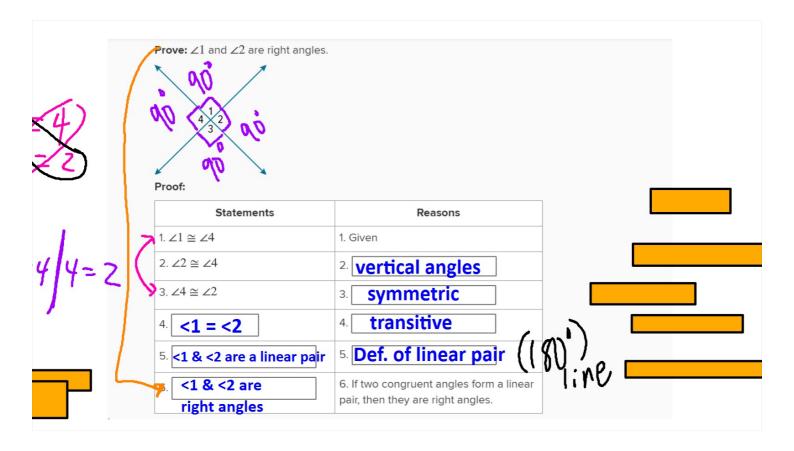
$$4. AM + MB = AB$$

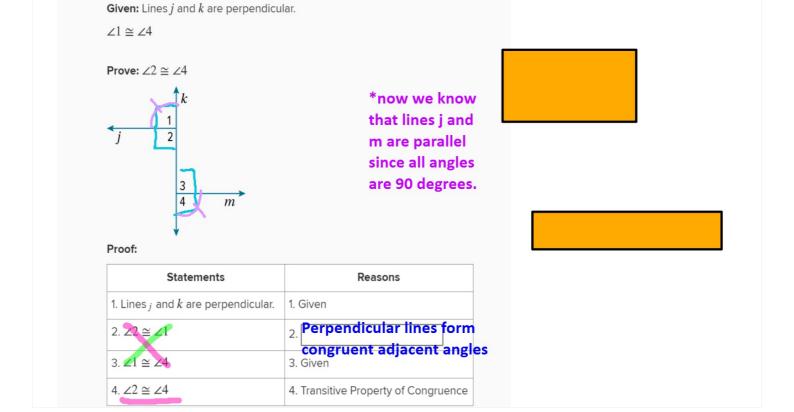

$$5. AM + AM = AB$$

6.
$$2AM = AB$$


7.
$$AM = \frac{1}{2}AB$$

REASONS


- 1. Given
- 2. Definition of midpoint
- **3.** Definition of congruent segments
- **4.** Segment Addition Postulate (Post. 1.2)
- 5. Substitution Property of Equality
- **6.** Distributive Property
- 7. Division Property of Equality



You reflect the beam of a spotlight off a mirror lying flat on a stage, as shown. Determine whether $m \angle DBA = m \angle EBC$.

Statements	Reasons
$1. m \angle 1 = m \angle 3$	Given
2. $140 = \frac{m\angle 3 + m\angle 2}{40 + 100}$	Angle Addition Postulate
3. $m \angle DBA = m \angle 1 + m \angle 2$	Substitution Property of Equality
4. $m \angle 1 + m \angle 2 = m \angle EBC$	Angle Addition Postulate
$\frac{m\angle DBA = m\angle EBC}{ 40 - 40 }$	Transitive Property of Equality

