Module 1 Vocab: Geometric Reasoning

Tuesday, August 16, 2022 8:40 PM

Quizlet: https://quizlet.com/join/qvPuvXwCC

Module 1: Geometric Reasoning

Learn

Points, Lines, and Planes

Undefined Terms	
A point is a location. It has neither shape nor size. Named by a capital letter Example point A	<i>A</i>
A line is made up of points and has no thickness or width. There is exactly one line through any two points. Named by the letters representing two points on the line or a lowercase script letter Example line m , line PQ or \overrightarrow{PQ} , line QP or \overrightarrow{QP}	$P \longrightarrow m$

McGraw Hill | Points, Lines, and Planes

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Learn

Points, Lines, and Planes

Undefined Terms

A **plane** is a flat surface made up of points that extends infinitely in all directions. There is exactly one plane through any three points not on the same line.

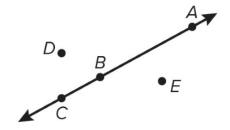

Named by a capital script letter or by the letters

naming three points that are not all on the

same line

Example plane \mathcal{K} , plane BCD, plane CDB, plane

DCB, plane DBC, plane CBD, plane BDC

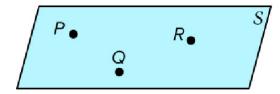

Learn

Points, Lines, and Planes

Space is defined as a boundless three-dimensional set of all points. Space can contain lines and planes. **Collinear** points are points that lie on the same line. *Noncollinear* points do not lie on the same line.

Points A, B, and C are collinear.

McGraw Hill | Points, Lines, and Planes


This material may be reproduced for licensed classroomus only and may not be further reproduced or distribute

Learn

Points, Lines, and Planes

Coplanar points are points that lie in the same plane. *Noncoplanar* points do not lie in the same plane.

Points P, Q, and R are coplanar in plane S.

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Learn

Intersections of Lines and Planes

The **intersection** of two or more geometric figures is the set of points they have in common. Two lines intersect in a point. Lines can intersect planes, and planes can intersect each other.

McGraw Hill | Points, Lines, and Planes

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Learn

Betweenness of Points

A **line segment** is a measurable part of a line that consists of two points, called endpoints, and all of the points between them. The two endpoints are used to name the segment.

For any two real numbers a and b, there is a real number n between a and b such that a < n < b. This relationship also applies to points on a line and is called **betweenness of points**.

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Learn

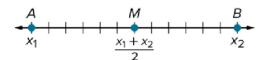
Line Segment Congruence

If two geometric figures have exactly the same shape and size, then they are **congruent**. Two segments that have the same measure are **congruent segments**.

McGraw Hill | Line Segments

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Learn


Midpoints on a Number Line

The **midpoint** of a segment is the point halfway between the endpoints of the segment. A point is **equidistant** from other points if it is the same distance from them. The midpoint separates the segment into two segments with a ratio of 1:1.

Key Concept: Midpoint on a Number Line

If \overline{AB} has endpoints at x_1 and x_2 on a number line, then the midpoint M of \overline{AB} has coordinate $M = \frac{x_1 + x_2}{2}$.

