Tuesday, September 10, 2024 9:51 PM

Click link below for interactive Pear Deck PowerPoint Lesson: https://app.peardeck.com/student/tshmrtovt

Lesson 1.4 Midpoints and Bisectors Workbook pages 31-40

MA.912.GR.3.3

Use coordinate geometry to solve mathematical and real-world geometric problems involving lines, circles, triangles and quadrilaterals.

MA.912.GR.5.2

Construct the bisector of a segment or an angle, including the perpendicular bisector of a line segment.

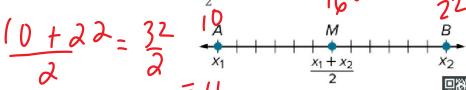
Content Objective

Students will find midpoints and bisect line segments.

Copyright @ McGraw Hill

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Learn


Midpoints on a Number Line

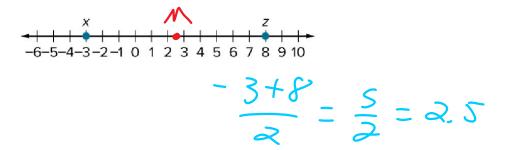
The **midpoint** of a segment is the point halfway between the endpoints of the segment.

A point is **equidistant** from other points if it is the same distance from them.

Key Concept: Midpoint on a Number Line

If \overline{AB} has endpoints at x_1 and x_2 on a number line, then the midpoint M of \overline{AB} has coordinate $M = \frac{x_1 + x_2}{2}$.

Students, draw anywhere on this slide!

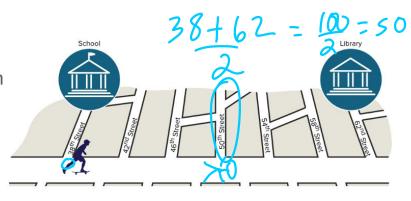

Pear Deck Interactive Slide
Do not remove this bar

Find the Midpoint on a Number Line

Find the coordinate of the midpoint of \overline{XZ} .

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar



Example 2

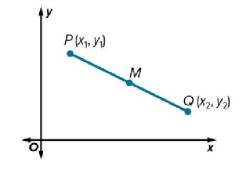
Midpoints in the Real World

DISTANCE Kenneth travels from his school on 38th Street to the library on 62nd Street. He stops halfway there to take a break. Where does Kenneth stop to rest?

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar

Learn

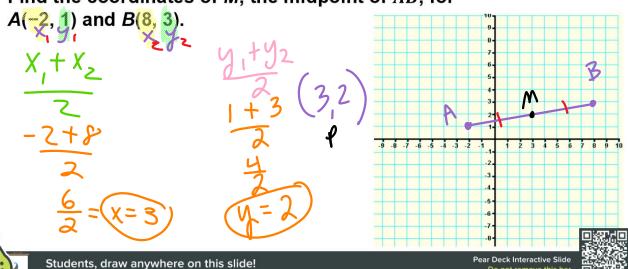

Midpoints on the Coordinate Plane

Key Concept: Midpoint Formula on the Coordinate Plane

If \overline{PQ} has endpoints at $P(x_1, y_1)$

If \overline{PQ} has endpoints at $P(x_1, y_1)$ and $Q(x_2, y_2)$ on the coordinate plane, then the midpoint M of \overline{PQ} has coordinates $M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$.

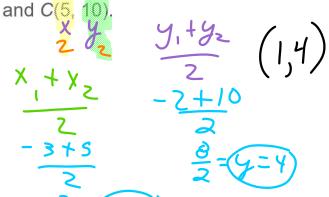
Students, draw anywhere on this slide!

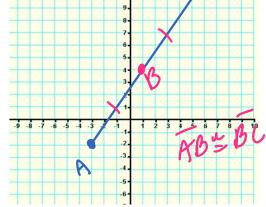

Pear Deck Interactive Slide

Example 3

Find the Midpoint on the Coordinate Plane

Find the coordinates of M, the midpoint of \overline{AB} , for

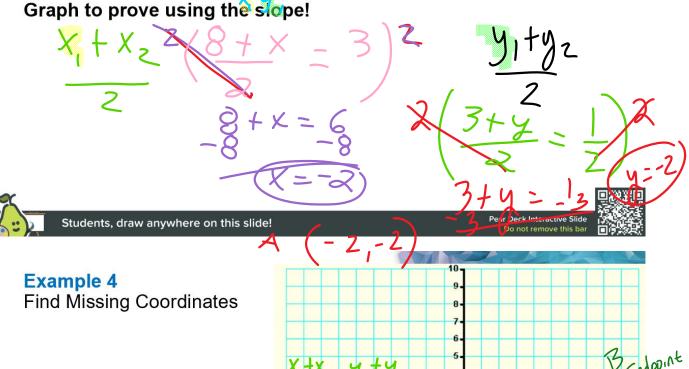


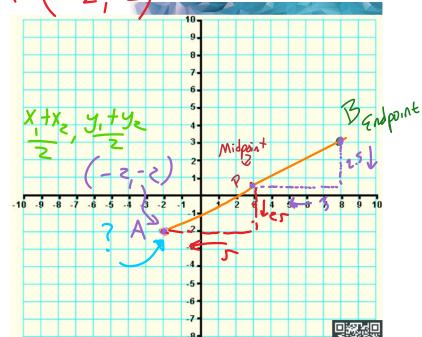

Example 3

Find the Midpoint on the Coordinate Plane

Check

Find the coordinates of B, the midpoint of \overline{AC} , for A(-3, -2)





Find Missing Coordinates

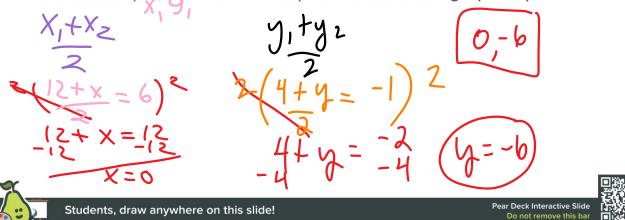
Find the coordinates of A if $P(3,\frac{1}{2})$ is the midpoint of \overline{AB} and B has coordinates (8, 3). *Use the midpoint Formula & Graph to prove using the slope!

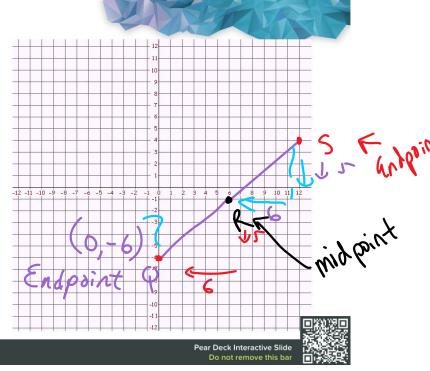
Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Example 4

Find Missing Coordinates


Check


Find Missing Coordinates

Check

Find the coordinates of Q if R(6, -1) is the midpoint of \overline{QS} and S has coordinates (12, 4). Use the midpoint formula and graph to prove.

Example 4 Find Missing Coordinates

Students, draw anywhere on this slide!

Learn

Bisectors

Because the midpoint separates a segment into two congruent segments, we can say that the midpoint bisects the segment. Any segment, line, plane, or point that bisects a segment is called a segment bisector.

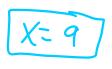
Find Missing Measures

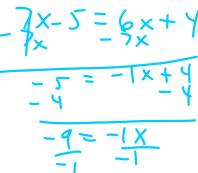
Find the measure of RT if T is the midpoint of \overline{RQ} .

RTETQ

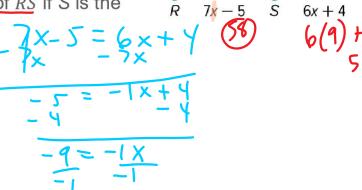
Students, draw anywhere on this slide!

Pear Deck Interactive Slide

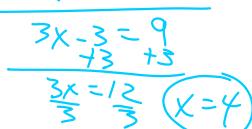


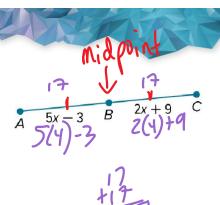

Example 5

Find Missing Measures


Check

Find the measure of RS if S is the midpoint of \overline{RT} .




Pear Deck Interactive Slide

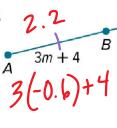
Find the Total Length

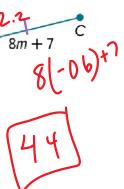
Find the measure of \overline{AC} if B is the midpoint of \overline{AC} .

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Example 6


Find the Total Length


Check

Find the measure of \overline{AC} if B is the midpoint of \overline{AC} . Round your answer to the nearest tenth, if necessary.

$$3m+4-8m+7$$

$$3m = 8m + 3$$

 $-8m - 8m$
 $-Sm = 3$
 $m = -0.6$

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

