Tuesday, March 26, 2024 11:14 PM

Click Link Below to Open the Interactive Pear Deck PowerPoint https://app.peardeck.com/student/tmmgxgvcz

Quadrilat...

Module 7: Quadrilaterals Geometry

Content Objective

Students apply and prove theorems about the properties of parallelograms.

Students use the properties of rectangles to determine whether a parallelogram is a rectangle and to write proofs.

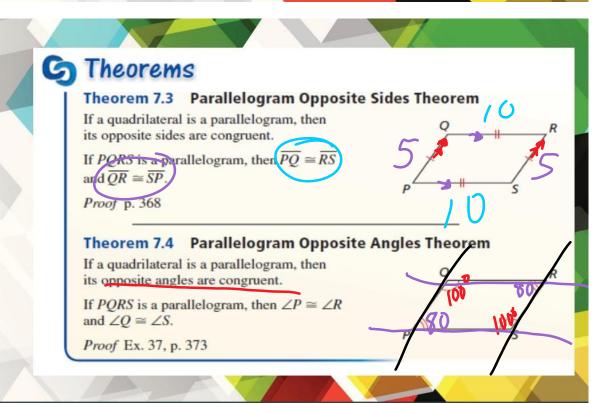
Students apply and prove the properties of rhombi and squares

Students recognize and apply the properties of trapezoids and kites.

MA.912.GR.1.4

Prove relationships and theorems about parallelograms. Solve mathematical and real-world problems involving postulates, relationships and theorems of parallelograms.

MA.912.GR. 3.2

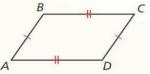

Given a mathematical context, use coordinate geometry to classify or justify definitions, properties and theorems involving circles, triangles or quadrilaterals.

MA.912.GR.3.3

Use coordinate geometry to solve mathematical and real-world geometric problems involving lines, circles, triangles and quadrilaterals.

MA.912.GR.1.5

Prove relationships and theorems about trapezoids. Solve mathematical and real-world problems involving postulates, relationships and theorems of trapezoids.

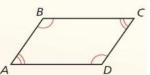


G Theorems

Theorem 7.7 Parallelogram Opposite Sides Converse

If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$, then ABCD is a parallelogram.



Theorem 7.8 Parallelogram Opposite Angles Converse

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

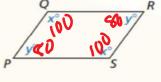
If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then ABCD is a parallelogram.

Proof Ex. 39, p. 383

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

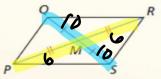
G Theorems


Theorem 7.5 Parallelogram Consecutive Angles Theorem

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

If *PQRS* is a parallelogram, then $x^{\circ} + y^{\circ} = 180^{\circ}$.

Proof Ex. 38, p. 373



Theorem 7.6 Parallelogram Diagonals Theorem

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

If PQRS is a parallelogram, then $\overline{QM} \cong \overline{SM}$ and $\overline{PM} \cong \overline{RM}$.

Proof p. 370

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar

6 Theorems

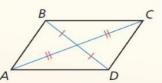
Theorem 7.9 Opposite Sides Parallel and Congruent Theorem

If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.

If $\overline{BC} \parallel \overline{AD}$ and $\overline{BC} \cong \overline{AD}$, then ABCD is

a parallelogram.

Proof Ex. 40, p. 383

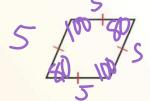

A

Theorem 7.10 Parallelogram Diagonals Converse

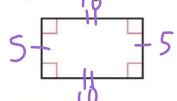
If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

If \overline{BD} and \overline{AC} bisect each other, then ABCD is a parallelogram.

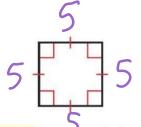
Proof Ex. 41, p. 383



Students, draw anywhere on this slide!


Pear Deck Interactive Slide Do not remove this bar

G Core Concept


Rhombuses, Rectangles, and Squares

A **rhombus** is a parallelogram with four congruent sides.

A **rectangle** is a parallelogram with four right angles.

A **square** is a parallelograr with four congruent sides and four right angles.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar

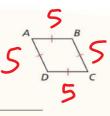
G Corollaries

Corollary 7.2 Rhombus Corollary

A quadrilateral is a rhombus if and only if it has four congruent sides.

ABCD is a rhombus if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$.

Proof Ex. 81, p. 396



A quadrilateral is a rectangle if and only if it has four right angles.

ABCD is a rectangle if and only if $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

Proof Ex. 82, p. 396

Corollary 7.4 Square Corollary

A quadrilateral is a square if and only if it is a rhombus and a rectangle.

ABCD is a square if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$ and $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

Proof Ex. 83, p. 396

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Theorem 7.11 Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular.

 $\Box ABCD$ is a rhombus if and only if $\overline{AC} \perp \overline{BD}$.

Proof p. 390; Ex. 72, p. 395

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

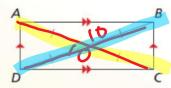
 $\Box ABCD$ is a rhombus if and only if \overline{AC} bisects $\angle BCD$ and $\angle BAD$, and \overline{BD} bisects $\angle ABC$ and $\angle ADC$.

Proof Exs. 73 and 74, p. 395

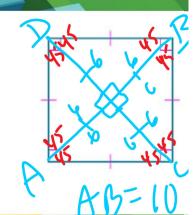
et

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar



Theorem 7.13 Rectangle Diagonals Theorem


A parallelogram is a rectangle if and only if its diagonals are congruent.

 $\square ABCD$ is a rectangle if and only if $\overline{AC} \cong \overline{BD}$.

Proof Exs. 87 and 88, p. 396

square is a parallelogram with all four sides and all four angles congruent. All of the properties of parallelograms, rectangles, and rhombi apply to squares. For example, the diagonals of a square bisect each other (parallelogram), are congruent (rectangle), and are perpendicular (rhombus).

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Theorems: Conditions for Rhombi and Squares

Theorem 7.17

If the diagonals of a parallelogram are perpendicular, then the parallelogram is a simple of the pa

Theorem 7.18

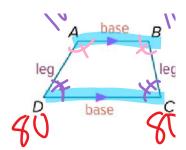
If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a representation of the

Theorem 7.19

If two consecutive sides of a parallelogram are congruent, then the parallelogram is a figure of the consecutive sides of a parallelogram are congruent, then the

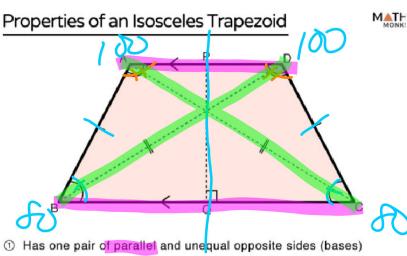
Theorem 7.20

If a quadrilateral is both a rectangle and a rhombus, then it is a


Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

A li apezulu is a quaurilaterar with at least une pair of parallel sides. In a trapezoid that is not a parallelogram, the parallel sides are called the bases and the nonparallel sides are called legs.


A base angle is formed by a base and a leg. In trapezoid ABCD, $\angle A$ and $\angle B$ are one pair of base angles, and $\angle C$ and $\angle D$ are the other pair. If the legs are congruent, then a trapezoid is an isosceles trapezoid.

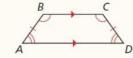
Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

- ② Has one pair of congruent non-parallel sides (legs)
- 3 Lower base angles & upper base angles are congruent
- Diagonals are congruent
- (5) Any lower base angle is supplementary to any upper base angle
- 6 Has one line of symmetry connecting the bases at their midpoints

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

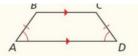


Theorem 7.14 Isosceles Trapezoid Base Angles Theorem

If a trapezoid is isosceles, then each pair of base angles is congruent.

If trapezoid *ABCD* is isosceles, then $\angle A \cong \angle D$ and $\angle B \cong \angle C$.

Proof Ex. 39, p. 405

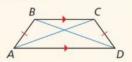


Theorem 7.15 Isosceles Trapezoid Base Angles Converse

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A = \angle D$ (or if $\angle B = \angle C$), then trapezoid *ABCD* is isosceles.

Proof Ex. 40, p. 405



Theorem 7.16 Isosceles Trapezoid Diagonals Theorem

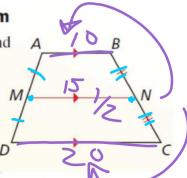
A trapezoid is isosceles if and only if its diagonals are congruent.

Trapezoid *ABCD* is isosceles if and only if $\overline{AC} \cong \overline{BD}$.

Proof Ex. 51, p. 406

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar



Theorem 7.17 Trapezoid Midsegment Theorem

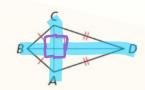
The midsegment of a trapezoid is parallel to each base, and its length is one-half the sum of the lengths of the bases.

If \overline{MN} is the midsegment of trapezoid ABCD, then $\overline{MN} \parallel \overline{AB}$, $\overline{MN} \parallel \overline{DC}$, and $\overline{MN} = \frac{1}{2}(AB + CD)$,

Proof Ex. 49, p. 406

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar

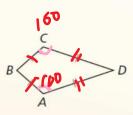


Theorem 7.18 Kite Diagonals Theorem

If a quadrilateral is a kite, then its diagonals are perpendicular.

If quadrilateral ABCD is a kite, then $\overline{AC} \perp \overline{BD}$

Proof p. 401



Theorem 7.19 Kite Opposite Angles Theorem

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral ABCD is a kite and $\overline{BC} \cong \overline{BA}$, then $\angle A \cong \angle C$ and $\angle B \ncong \angle D$.

Proof Ex. 47, p. 406

Kites

A **kite** is a convex quadrilateral with exactly two distinct pairs of adjacent congruent sides. Unlike a parallelogram, the opposite sides of a kite are not congruent or parallel.

Theorems: Kites Theorem 7.25

If a quadrilateral is a kite, then its diagonals are perpendicular.

Theorem 7.26

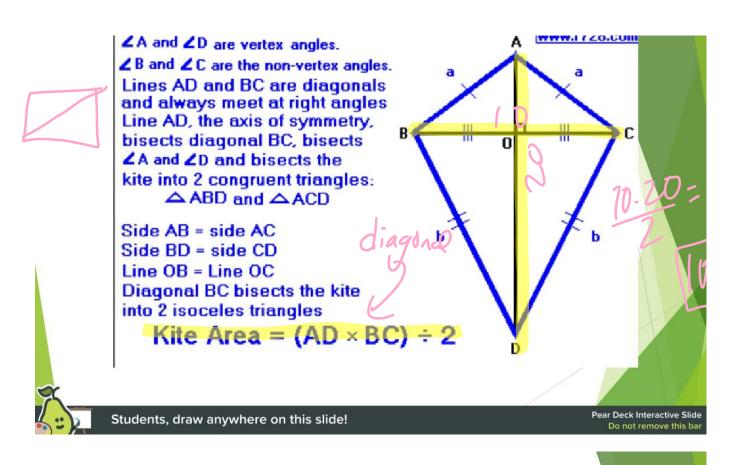
If a quadrilateral is a kite, then exactly one pair of opposite angles is congruent. Between

He = MM (1) W

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Properties of Kites and Transpoids

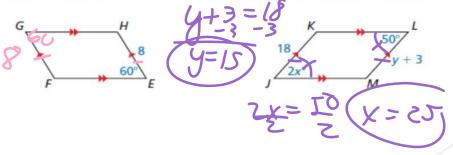

Kite:


- 2 distinct pairs of consecutive congruent sides.
- One diagonal is the ⊥ bisector of the other.
- · Non-vertex angles are congruent.
- · One diagonal bisects both vertex angles.

100 Vertex Angles **Non-vertex Angles**

Students, draw anywhere on this slide!

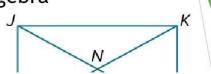
Pear Deck Interactive Slide Do not remove this bar



Find the values of x and y. X+Y=1 X=8 Y=65

1. Find FG and $m \angle G$.

2. Find the values of x and y.


Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Example 2

Use Properties of Rectangles and Algebra

Check

