
Module 10: Circles

Sunday, April 14, 2024 11:32 PM

Print ink Below to Open the Interactive Pear Deck PowerPoint https://app.peardeck.com/student/tmeekmcfy

CHAPTER 10: Geometry

MA.912.GR.6.1

Solve mathematical and real-world problems involving the length of a secant, tangent, segment or chord in a given circle.

MA 912 GR 6.2

Solve mathematical and real-world problems involving the measures of arcs and related angles.

MA.912.GR.6.4

Solve mathematical and real-world problems involving the arc length and area of a sector in a given circle.

MA.912.GR.6.3

Solve mathematical problems involving triangles and quadrilaterals inscribed in a circle

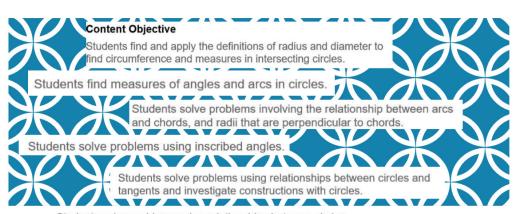
MA.912.GR.5.3

Construct the inscribed and circumscribed circles of a triangle.

MA.912.GR.3.2

Given a mathematical context, use coordinate geometry to classify or justify definitions, properties and theorems involving circles, triangles or quadrilaterals.

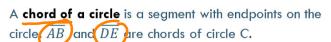
MA.912.GR.3.3


Use coordinate geometry to solve mathematical and real-world geometric problems involving lines, circles, triangles and quadrilaterals.

Given a mathematical or real-world context, derive and create the equation of a circle using key features.

MA.912.GR.7.3

Graph and solve mathematical and real-world problems that are modeled with an equation of a circle. Determine and interpret key features in terms of the context.


Students solve problems using relationships between circles, tangents, and secants.

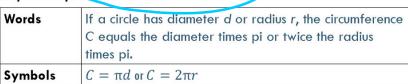
> Students write and graph the equations of circles using key features.

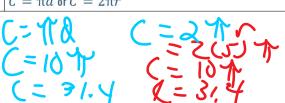
Parts of Circles

A circle is the set of all points in a plane that are the same distance from a given point called the center of a circle. The center of the circle below is C.

A radius of a circle (plural radii) is a line segment from D the center to a point on a circle. \overline{CD} , \overline{CE} , and \overline{CF} are radii of circle C. Its measure is half the diameter.

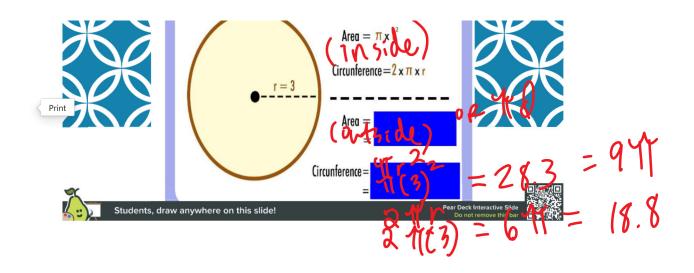
A diameter of a circle is a chord that passes through the center of a circle \overline{DE} is a diameter of circle C. The measure is twice the radius.





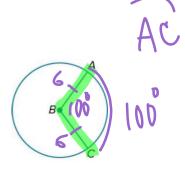
Parts of Circles

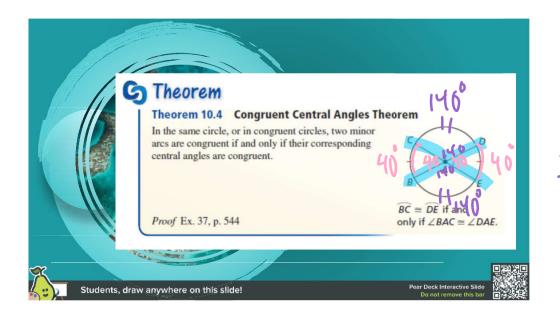
Key Concept: Circumference Formula



Students, draw anywhere on this slide!

Pear Deck Interactive Slide

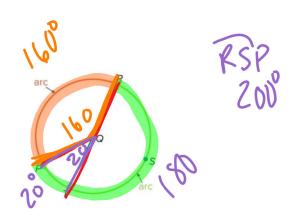




Measuring Angles and Arcs

A central angle of a circle is an angle with a vertex at the center of a circle and sides that are radii. $\angle ABC$ is a central angle of $\bigcirc B$.

A **degree** is $\frac{1}{360}$ of the circular rotation about a point. This leads to the following relationship.



360 -80 280/2 140°

Measuring Angles and Arcs

An **arc** is part of a circle that is defined by two endpoints. A central angle separates the circle into two arcs with measures related to the measure of the central angle.

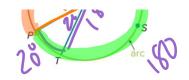
A **minor arc** has a measure less than 180°. The measure of a minor arc is equal to the measure of its related central angle.

Students, draw anywhere on this slide!

Students, draw anywhere on this slide


This is a Pear Deck Drawing Slide

Deck Interactive Slide to not remove this bar


Learn

Measuring Angles and Arcs

A **major arc** has a measure greater than 180° . The measure of a major arc is equal to 360° minus the measure of the minor arc with the same endpoints. $m \frac{PSR}{PR} = 360^{\circ} - m \frac{PR}{PR}$.

A **semicircle** is an arc that measures exactly 180°. The endpoints of a semicircle lie on a diameter. $mRST = 180^{\circ}$.

360 -160 200°

Print

Congruent arcs are arcs in the same or congruent circles that have the same measure.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar

earn

Arc Length and Radian Measure

Key Concept: Arc Length in Degrees

Words	The ratio of the length of an arc ℓ to the circumference of the circle is equal to the ratio of the degree measure of the arc to 360° .
Proportion	$\frac{\ell}{2\pi r} = \frac{x}{360^{\circ}}$
Equation	$\ell = \frac{x}{360^{\circ}} \cdot 2\pi r \qquad 160$
2056	.55 360 1102 M

Students, draw anywhere on this slide!

140 3 . M 300 T . M

