(1)

Determine whether \overrightarrow{AB} and \overrightarrow{CD} are parallel, perpendicular, or neither. You must use the slope formula to justify your answers.

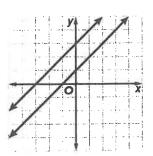
Perio

A(-2, 2), B(4, 4), C(-1, 4), D(1, -2)

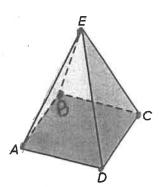
AB and ED to prove

Fraph the line perpendicular to $y = -\frac{3}{2}x + 1$ that passes through the point at (-3, -4).

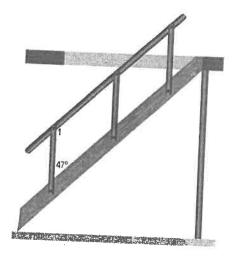
@ Write the revolun of the line (3)


Graph the line parallel to the line y=x -4 that passes through the point at (-3,1).

Part A) graph both lines.
Part B) Write the equation of the line.

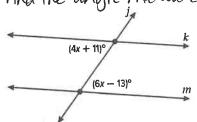

What is the shortest distance between the line y=2x +4 and the point at (4,2)?
Leave your answer in simplest radical form.
*Make sure to graph both lines.

What is the distance between parallel lines y = x + 3 and y = x + 1, rounded to the nearest hundredth?


Match each segment to the term that describes how it is related to \overline{AB} .

- ĀĒ
- A. skew
- B. intersecting
- C. parallel

STAIRS Julie is building this staircase with a rail.

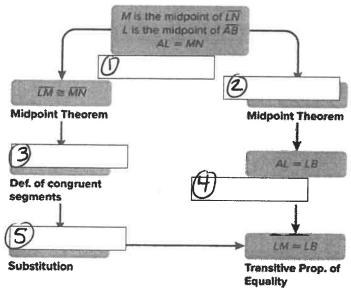

What measure of ∠1 will ensure that the rail is parallel to the bottom of the staircase?

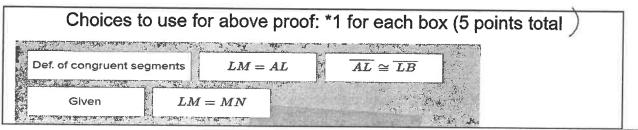
Point C is the midpoint of \overline{AB} and point B is between points A and D. If AD = 15 and BD = 7, what is CD?

Find the value of x that will make $k \parallel m$. Find the angle measures.

. Determine whether each pair of lines parallel, perpendicular, or neither.

a)
$$y=4x-5$$
 and $y-\underline{1}=2(x-5)$ b) $y+4=2(x-7)$ and $y=-\underline{1}x+8$

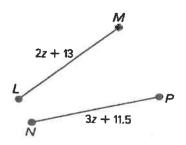

b)
$$y+4=2(x-7)$$
 and $y=-1x+8$

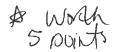

a)
$$y=4x-5$$
 and $y-1 = 2(x-5)$

c) x = 7 and x = -3

d)
$$y-3 = -6(x+1)$$
 and $y+5 = -6(x+4)$

PROOF Complete the flow proof to prove that if point M is the midpoint of \overline{LN} , point L is the midpoint of \overline{AB} , and AL = MN, then LM = LB. Drag the statements and reasons to complete the proof.

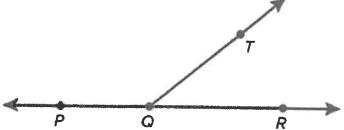



PROOF Complete the two-column proof by dragging the missing statements and reasons into the correct order.

Given: $\overline{LM}\cong \overline{NP}$

Prove: z = 1.5

Statements	Reasons
1. ?	1. Given
2. LM = NP	2. ?
3. ?	Substitution Property of Equality
4. ?	Subtraction Property of Equality
5.1.5 = z	5. Subtraction Property of Equality
6. z = 1.5	6. ?

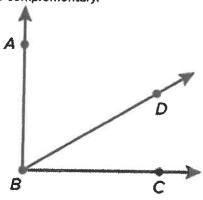


PROOF Complete the two-column proof for the given theorem by dragging the missing statements and reasons into the correct order.

Supplement Theorem

Given: $\angle PQT$ and $\angle TQR$ form a linear pair. **Prove:** $\angle PQT$ and $\angle TQR$ are supplementary.

Proof:


Statements	Reasons 1. ?	
1. $\angle PQT$ and $\angle TQR$ form a linear pair.		
2. ?	2. Given from figure	
3. ?	3. Def. of straight angle	
4. $m \angle PQT + m \angle TQR = m$ $\angle PQR$	4. ?	
5. ?	5. Substituti	
6. ∠PQT and ∠TQR are supplementary.	6. ?	

PROOF Complete the two-column proof for the given theorem by dragging the missing statements and reasons into the correct order.

Complement Theorem

Given: $\angle ABC$ is a right angle. Prove: $\angle ABD$ and $\angle CBD$ are complementary.

Statements	Reasons
1. ?	1. Given
$2. m \angle ABC = 90^{\circ}$	2. ?
3. ?	3. Angle Add. Post
4. ?	4. Substitution
5. ∠ABD and ∠CBD are complementary.	5. ?

