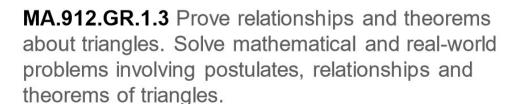

Tuesday, December 5, 2023 9:15 PM

Click Link Below to Open the Interactive Pear Deck PowerPoint https://app.peardeck.com/student/tzxffpejy

Content Objectives:


- * Students will prove and apply the Triangle Angle-Sum Theorem, Exterior Angle Theorem, and Triangle Angle-Sum Theorem Corollaries.
 - Students explain congruence between triangles based on their corresponding parts using *same*, equal, corresponding, and congruent.

Copyright @ McGraw Hill

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Florida's B.E.S.T. Standards for Mathematics

MA.912.GR.1.6 Solve mathematical and real-world problems involving congruence or similarity in two-dimensional figures.

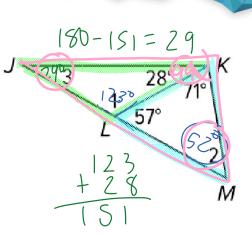
MA.912.GR.2.6 Apply rigid transformations to map one figure onto another to justify that the two figures are congruent.

McGraw Hill | Angles of Triangles

McGraw Hill | Angles of Triangles

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Apply Example 1


Use the Triangle Angle-Sum Theorem

Theorem 5.1: Triangle Angle-Sum Theorem

The sum of the measures of the interior angles of a triangle is 180°.

Find the measure of each numbered angle.

57+71=128 180-128=52°

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Learn

Exterior Angles of Triangles

exterior angles	An exterior angle of a triangle is an angle formed by one side of the triangle and the extension of an adjacent side. A triangle has three exterior angles. $\angle 4$ is an exterior angle of $\triangle ABC$.	B 4 20 exterior
remote interior angles	Each exterior angle of a triangle has two remote interior angles that are not adjacent to the exterior angle. ∠1 and ∠3 are the remote interior angles for ∠4.	A interior 71° C

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar

Example 2

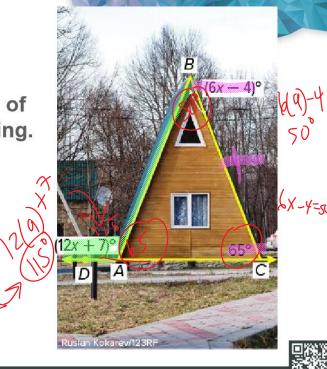
Use the Exterior Angle Theorem

ARCHITECTURE Find the measure of **LDAB** in the front face of the building.

$$12x + 7 = 6x - 4 + 65$$

$$12x + 7 = 6x + 61$$

$$-7$$


$$12x = 6x + 54$$

$$-6x = 6x + 54$$

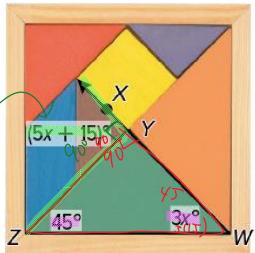
$$6x = 54$$

$$x = 9$$

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Example 2


Use the Exterior Angle Theorem

Check

PUZZLES Find the measure of ZXYZ.

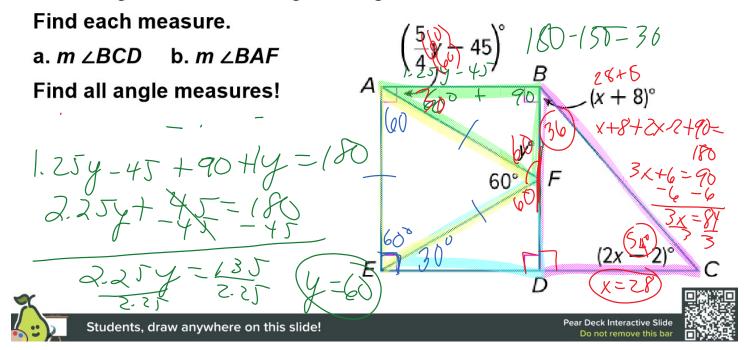
$$5x + 15 = 45 + 3x$$

$$\frac{5x - 30 + 3x}{-3x}$$

5+90+3x=6 Olga Popova/Shutterstock

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar



Find Angle Measures in Right Triangles

Find each measure.

Find Angle Measures in Right Triangles

Learn

Interior Angles of Triangles

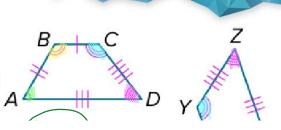
Key Concept: Congruent Triangles

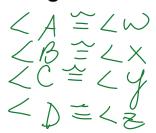
Two triangles are congruent if and only if their corresponding parts are congruent.

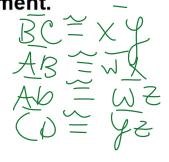
For triangles, we say Corresponding parts of congruent triangles are congruent, or CPCTC.

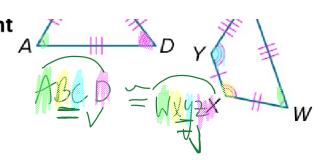
In two **congruent polygons**, all the parts of one polygon are congruent to the **corresponding parts**, or matching parts, of the other polygon. These corresponding parts include *corresponding angles* and *corresponding sides*.

Students, draw anywhere on this slide!


Pear Deck Interactive Slide Do not remove this bar


Example 1


Identify Corresponding Congruent Parts


Show that the polygons are congruent by identifying all the congruent

Show that the polygons are congruent by identifying all the congruent corresponding parts. Then write a congruence statement.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Example 2

Use Corresponding Parts of Congruent (12.5)4 Triangles

In the diagram, △RŞV≅ △7 Find the values of x and y.

Part A Find the value of x.

Part B Find the value of y. 24

LSVR=ZVSI

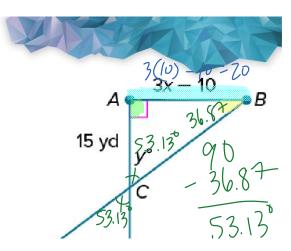
24.5

24

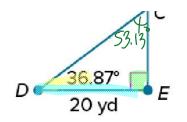
78°

Students, draw anywhere on this slide!

Pear Deck Interactive Slide


Example 2

Use Corresponding Parts of Congruent Triangles


Check

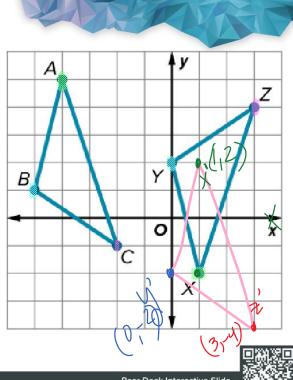
In the diagram, $\triangle ABC \cong \triangle ECC$. Find the values of x and y.

3x-10=20

values of x and y. 3x - 10 = 20 + 10 + 10 3x = 3x = 3x

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar



Example 3

Justify Congruence Using Rigid Transformations

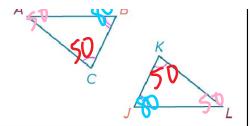
Is $\triangle ABC \cong \triangle XYZ$? Justify your answer using rigid transformations.

(1) Reflection over the x-axis 2) translation (X-5, 4+3)

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Learn


Third Angles Theorem and Triangle Congruence

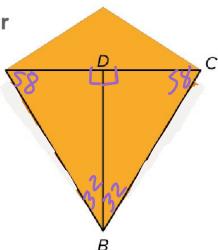
Theorem 5.3: Third Angles Theorem

Words	If two angles of one triangle are congruent to two angles of a second triangle, then the third angles of the triangles are congruent.	
	If $\angle C \cong \angle K$ and $\angle B \cong \angle J$, A then $\angle A \cong \angle L$.	

Example

If $\angle C \cong \angle K$ and $\angle B \cong \angle J$, then $\angle A \cong \angle L$.

Students, draw anywhere on this slide!


Pear Deck Interactive Slide Do not remove this bar

Example 4

Use the Third Angles Theorem

ORIGAMI Aika is folding origami dragons for a party she is hosting. If $\angle ABD \cong \angle CBD$ and $m \angle BAD = 58^\circ$, find $m \angle CBD$.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide


Example 4

Use the Third Angles Theorem

Check

KITES In the kite shown, $\angle BAD \cong \angle BCD$ and $m\angle BCD = 45^{\circ}$. Find $m\angle ABD$.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Example 5

Prove that Two Triangles Are Congruent

Write a two-column proof.

Given: $\angle J \cong \angle P$, $\overline{JK} \cong \overline{PM}$, $\overline{JL} \cong \overline{PL}$, and L bisects \overline{KM} .

Prove: $\triangle JLK \cong \triangle PLM$

1. $\angle J \cong \angle P$, $\overline{JK} \cong \overline{PM}$, $\overline{JL} \cong \overline{PL}$, and L bisects \overline{KM} .

Statements

- 2. ZJLK= ZPLM
- 3. $\overline{LK} \cong \overline{LM}$
- 1 ZJKL EZ PMC
- 5. DJLK = DRM

- 1. Given
- 2. Vertical angles are congruent.
- 3. Definition of seyment bisector
- 4. Third Angles Theorem
- 5. Definition of congruent triangles

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar