Tuesday, August 15, 2023 6:56 PM

Click Link Below to Open the Interactive Pear Deck PowerPoint https://app.peardeck.com/student/tevmicyfh

Lesson 1.1 Points, Lines, and Planes

MA.912.GR.1.1

Prove relationships and theorems about lines and angles. Solve mathematical and real-world problems involving postulates, relationships and theorems of lines and angles.

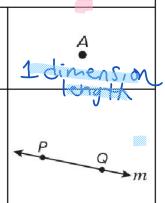
Content Objective

Students will analyze figures to identify points, lines, and planes and identify intersections of lines and planes.

Copyright @ McGraw Hill

This material may be reproduced for licensed classroom us only and may not be further reproduced or distributed

Points, Lines, and Planes


Undefined Terms

A **point** is a location. It has neither shape nor size. Named by a capital letter

Example point A

A **line** is made up of points and has no thickness or width. There is exactly one line through any two points. Named by the letters representing two points on the line or a lowercase script letter

Example line AA line AA line AA line AA line AA line AA

line or a lowercase script letter

Example line m, line PQ or \overrightarrow{PQ} , line QP or \overrightarrow{QP}

Students, draw anywhere on this slide!

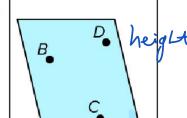
Pear Deck Interactive Slide Do not remove this bar

Learn

Points, Lines, and Planes

Undefined Terms

A **plane** is a flat surface made up of points that extends infinitely in all directions. There is exactly one plane through any three points not on the same line.


Named by a capital script letter or by the letters

naming three points that are not all on the

same line

Example plane \mathcal{K} , plane BCD, plane CDB, plane

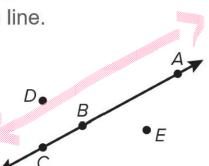
DCB, plane DBC, plane CBD, plane BDC

-Dimensia

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Learn

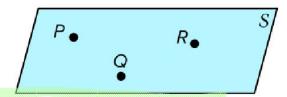

Points, Lines, and Planes

Space is defined as a boundless three-dimensional set of all points. Space can contain lines and planes.

Collinear points are points that lie on the same line.

Noncollinear points do not lie on the same lin

Points A, B, and C are collinear.



Learn

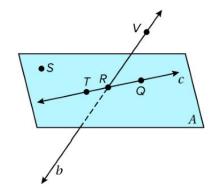
Points, Lines, and Planes

Coplanar points are points that lie in the same plane. *Noncoplanar* points do not lie in the same plane.

Points P, Q, and R are coplanar in plane S.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar


Example 1

Name Lines and Planes

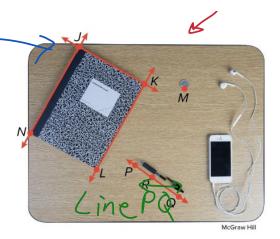
Use the figure to name each of the following.

- a. a line containing point Q
- b. a plane containing point S and point T

Plane STR

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar


Example 2

Model Points, Lines, and Planes

STUDENT DESK Name the geometric

STUDENT DESK Name the geometric terms modeled by the objects if the picture.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Learn

Intersections of Lines and Planes

The intersection	of two or more geome have in common.	tric figures is the
set of points they	have in common.	

Two lines intersect in a Point

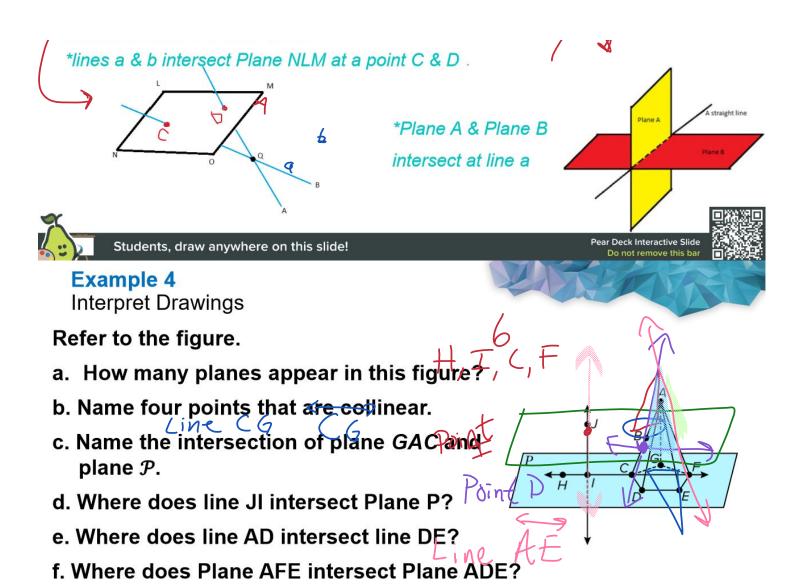
Lines intersect planes at a

Planes intersect each other at a ...

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Learn


Intersections of Lines and Planes

Two lines intersect in a _point_ Lines intersect planes at a _point_. Planes intersect each other at a _line_.

*line a & b intersect at Point Q.

*lines a & b intersect Plane NLM at a point C & D .

Lesson 1.2 Line Segments

Sunday, August 20, 2023 10:00 PM

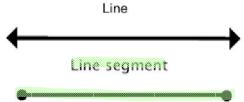
Click Link Below to Open the Interactive Pear Deck PowerPoint https://app.peardeck.com/student/tbypnrtzp

MA.912.GR.5.1

Construct a copy of a segment or an angle.

Content Objective

Students will calculate measures of line segments.


Copyright @ McGraw Hill

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

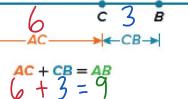
Learn

Betweenness of Points

A line segment is a measurable part of a line that consists of two points, called endpoints, and all of the points between them. The two endpoints are used to name the segment.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

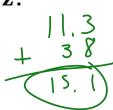

Learn

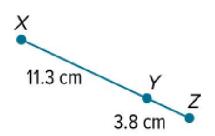
Betweenness of Points

Key Concept: Betweenness of Points

Point C is between A and B if and only if A, B, and C are collinear and AC + CB = AB.

In the example above, line segment AB, also written \overline{AB} , has endpoints A and B and contains point C. AB is the measure of \overline{AB} , AC is the measure of \overline{AC} , and CB is the measure of \overline{CB} .

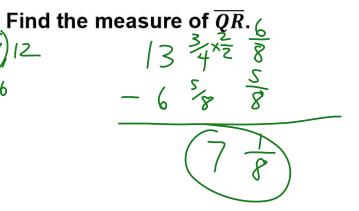

Students, draw anywhere on this slide!

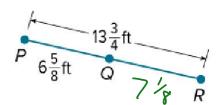


Example 1

Find Measurements by Adding

Find the measure of \overline{XZ} .


Students, draw anywhere on this slide!


Pear Deck Interactive Slide

Example 2

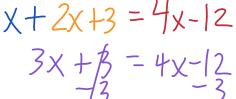
Find Measurements by Subtracting

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

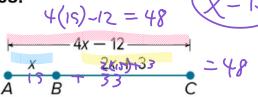
Example 3

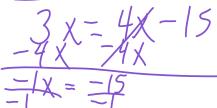
Write and Solve Equations to Find Measurements


Find the value of x and BC if B is between A and C,

$$AC = 4x - 12$$
, $AB = x$, and $BC = 2x + 3$.

I III a lie talae el A alla De II D le bettietti A alla e,


$$AC = 4x - 12$$
, $AB = x$, and $BC = 2x + 3$.

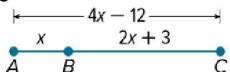

Step 1 Sketch two points and label them A and C. Connect the points.

Step 2 Sketch point *B* between points *A* and *C*.

Step 3 Label segments *AB*, *BC*, and *AC* with their given measures.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar



Example 3

Write and Solve Equations to Find Measurements

Step 4 Use betweenness of points to write an equation and solve for x.

Betweenness of points AC = AB + BC

Step 5 Find all the lengths to prove:

$$AB =$$

$$BC =$$

$$AC =$$

Students, draw anywhere on this slide!

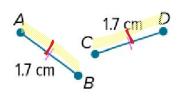
Pear Deck Interactive Slide
Do not remove this bar

Learn

Line Segment Congruence

If two geometric figures have exactly the same shape and size, then they are congruent. Two segments that have the same measure are congruent segments.

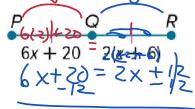
Key Concept: Congruent Segments


is read is congruent to. Tick marks

Key Concept: Congruent Segments

is read is congruent to. Tick marks
 on the figure also indicate congruence.
 Use a consecutive number of tick
 marks for each new pair of congruent
 segments in a figure.

Students, draw anywhere on this slide!


Pear Deck Interactive Slide Do not remove this bar

Example 5

Write and Solve Equations by Using Congruence

Find the value of x.

$$\frac{-4}{8} = -4x$$

$$6(-2) + 20 =$$
 $-12 + 20 = 8$
 $2(-2+6)$
 $2(4) = 8$

Students, draw anywhere on this slide!

Lesson 1.3 Locating Points Using Ratios (Partitioning)

Wednesday, August 23, 2023 8:51 PM

Click Link Below to Open the Interactive Pear Deck PowerPoint https://app.peardeck.com/student/tpjjhcqgy

Lesson 1.3 Locating Points Using Ratios

Workbook pages 23-30

Copyright @ McGraw Hill

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

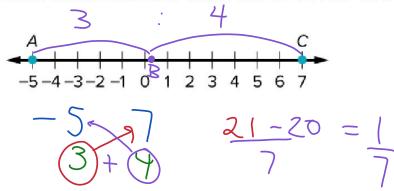
Florida's B.E.S.T. Standards for **Mathematics**

MA.912.GR.3.3

Use coordinate geometry to solve mathematical and real-world geometric problems involving lines, circles, triangles and quadrilaterals.

Content Objective

Students will find points that partition line segments on number lines and determine the coordinates of a point on a line segment that partitions the segment in a given ratio on the coordinate plane.


McGraw Hill | Locating Points Using Ratios

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Locate a Point on a Number Line When Given a Ratio

Pear Deck Interactive Slide

Example 1

Locate a Point on a Number Line When Given a Ratio

Use the Section Formula to determine the coordinate of point *B*.

$$B = \frac{nx_1 + mx_2}{m + n}$$

Section Formula

$$=\frac{4(-5)+3(7)}{3+4}=\frac{1}{7}$$
 $m=3, n=4, x_1=-5, \text{ and } x_2=7$

So, *B* is located at $\frac{1}{7}$ on the number line.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Example 1

Locate a Point on a Number Line When Given a Ratio

Check

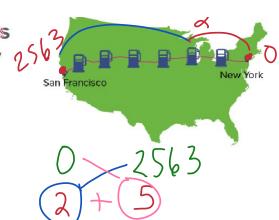
Find P on \overline{AF} such that the ratio of AP to PF is 1:3.

$$\frac{4}{12}\frac{1}{3}$$
 $\frac{4}{-16}\frac{1}{-14}\frac{1}{-12}\frac{1}{-10}\frac{1}{-8}\frac{1}{-6}\frac{1}{-4}\frac{1}{-2}\frac{1}{0}\frac{1}{2}$
 $\frac{1}{-45}$

$$\frac{1-45}{4} = \frac{-44}{4} = -11$$

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar


Example 2

Partition a Line Segment

ROAD TRIP Jorge is traveling 2563 miles from New York City to San Francisco by 150

ROAD TRIP Jorge is traveling 2563 miles from New York City to San Francisco by car. His next stop for gas will be when the ratio of the distance he has already traveled to the distance he still has to travel is 2.5. How far has Jorge traveled the next time he stops for gas?

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Example 2

Partition a Line Segment

Use the Section Formula to determine how far Jorge will have traveled when he stops for gas.

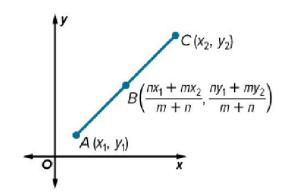
$$B = \frac{nx_1 + mx_2}{m + n}$$

$$\frac{5(0) + 2(2563)}{2 + 5} \approx 732.3$$

$$m = 2$$
, $n = 5$, $x_1 = 0$, and $x_2 = 2563$

When Jorge has traveled approximately 732.3 miles from New York City, the ratio of the distance he has traveled to the distance that he still has to travel is 2:5.

Students, draw anywhere on this slide!



Learn

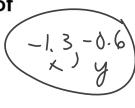
Locating Points on the Coordinate Plane with a Given Ratio

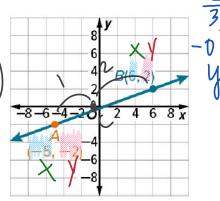
Key Concept: Section Formula on the Coordinate Plane

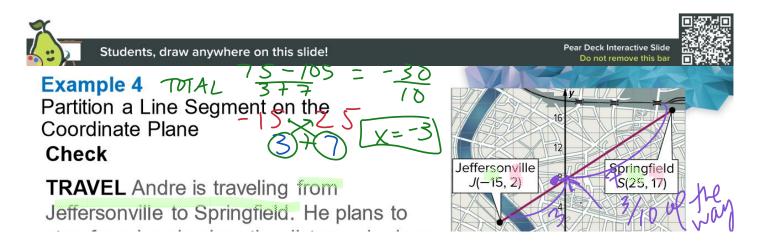
If A has coordinates (x_1, y_1) and C has coordinates (x_2, y_2) , then a point B that partitions the line segment in a ratio of m:n has coordinates $B\left(\frac{nx_1+mx_2}{m+n},\frac{ny_1+my_2}{m+n}\right)$, where $m \neq n$.

Students, draw anywhere on this slide!

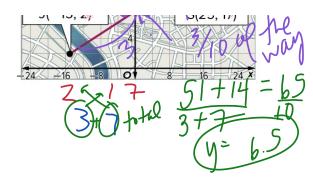
Pear Deck Interactive Slide Do not remove this bar


Example 3


Locate a Point on the Coordinate Plane When Given a Ratio


Find C on \overline{AB} such that the ratio of

AC to CB is 1:2.



IRAVEL Andre is traveling from

Jeffersonville to Springfield. He plans to stop for a break when the distance he has traveled and the distance he has left to travel have a ratio of 3:7. Where should Andre stop for his break?

Students, draw anywhere on this slide!

