Lesson 3.10 Perpendiculars Distance

Monday, November 27, 2023 8:25 PM

Click Link Below to Open the Interactive Pear Deck PowerPoint https://app.peardeck.com/student/tbxmhoima

Lesson 3.10 Perpendiculars and Distance Workbook pages 209-214

Content Objective
Students use perpendicular lines to find distance.

Copyright @ McGraw Hill

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed

Florida's B.E.S.T. Standards for Mathematics

MA.912.GR.1.1

Prove relationships and theorems about lines and angles. Solve mathematical and real-world problems involving postulates, relationships and theorems of lines and angles.

MA.912.GR.3.3

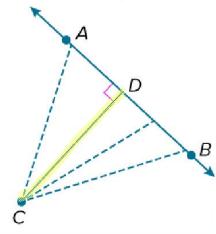
Use coordinate geometry to solve mathematical and real-world geometric problems involving lines, circles, triangles, and quadrilaterals

Class Notes Page 1

real-world geometric problems involving lines, circles, triangles and quadrilaterals.

McGraw Hill | Perpendiculars and Distance

This material may be reproduced for licensed classroomus only and may not be further reproduced or distribute


Learn

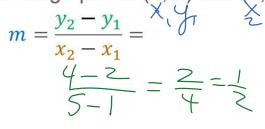
Distance Between a Point and a Line

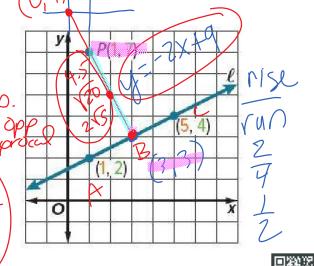
Key Concept: Distance Between a Point and a Line

The distance between a line and a point not on the line is the length of the segment perpendicular to the line from the point.

The shortest distance between point C and line AB is the length of the segment that is perpendicular to the line through the point. So, the distance between C and AB is CD.

Students, draw anywhere on this slide!


Pear Deck Interactive Slide Do not remove this ba


Example 1

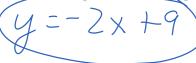
Distance from a Point to a Line on the Coordinate Plane

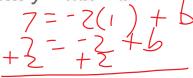
Find the equation of line ℓ . Step 1

Begin by finding the slope of the line through points (1, 2) and

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

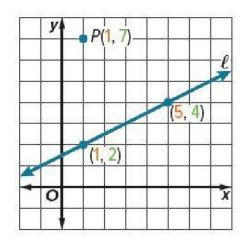

Example 1


Distance from a Point to a Line on the Coordinate Plane

Find the equation of the line perpendicular to line ℓ.

Write the equation of line w that is perpendicular to line ℓ and contains P(1, 7). Because the slope of line ℓ is $\frac{1}{2}$, the slope of line w is -2. Write the equation of line w through P(1, 7) with slope -2. 9=6

Use slope intercept form y = mx + b


Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Example 1

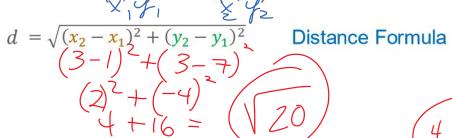
Distance from a Point to a Line on the Coordinate Plane

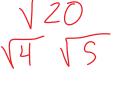
Step 3 Prove by Graphing!

Students, draw anywhere on this slide!

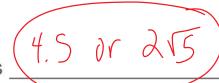
Pear Deck Interactive Slide

Distance from a Point to a Line on the




Example 1

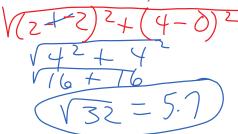
Distance from a Point to a Line on the Coordinate Plane

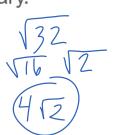

Step 4 Calculate the distance between P and Q.

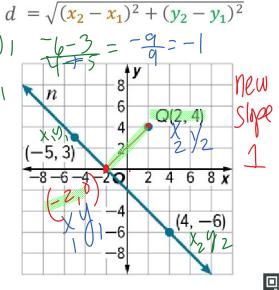
Use the Distance Formula to determine the distance

The distance between point P and line ℓ is

ear Deck Interactive Slide Do not remove this bar


Students, draw anywhere on this slide!

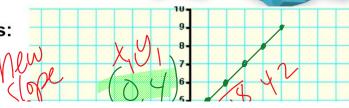

Example 1

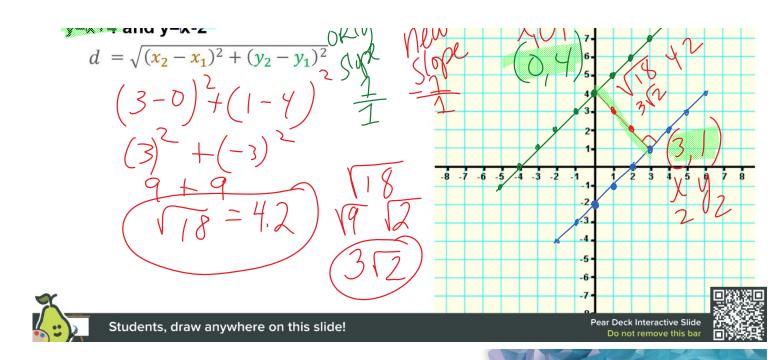

Distance from a Point to a Line on the Coordinate Plane

Check

Line n contains points (-5, 3) and (4, -6). Find the distance between $\chi_{z}^{\chi_{1}}$ line n and point Q(2, 4). Round to the nearest tenth, if necessary.

Students, draw anywhere on this slide!

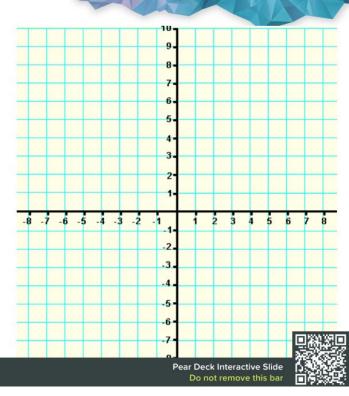

Pear Deck Interactive Slide


Distance Between Parallel Lines

Find the distance between the two lines:

y=x+4 and y=x-2

and y=x-2
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$



Distance Between Parallel Lines

Find the distance between the two lines: y= $\frac{1}{2}$ x + 1 and y= $\frac{1}{2}$ x - 4

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Students, draw anywhere on this slide!