1) PROOF Point Y is the midpoint of \overline{XZ} . Point W is collinear with X, Y, and Z. Z is the midpoint of \overline{YW} . Complete the two-column proof to prove that $\overline{XY}\cong \overline{ZW}$. Drag the statements and reasons to complete the proof.

Statements

X, Y, and Z. Z is the

1. Y is the midpoint of

XZ. W is collinear with

	Reasons
ı.	

midpoint of \overline{YW} .

2. Midpoint Thm.

3. Def. of \cong segments

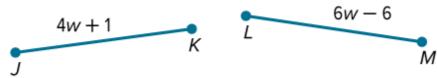
4. Transitive Prop. of Equality

5. $XY \cong ZW$

- $\overline{XY} \cong \overline{YZ}$ and $\overline{YZ} \cong \overline{ZW}$
- XY = ZW
- Given
- Def. of ≅ segs.
- XY = YZ and YZ = ZW

2) PROOF Complete the two-column proof to prove that w=3.5. The statements are provided on the left. Drag the reasons to the corresponding statements.

Given: $\overline{JK}\cong \overline{LM}$ **Prove**:w = 3.5



Proof:

1.
$$\overline{JK} \cong \overline{LM}$$

$$\mathbf{2.}\,JK=LM$$

3.
$$4w + 1 = 6w - 6$$

4.
$$4w + 7 = 6w$$

5.
$$7 = 2w$$

7.
$$w = 3.5$$

Substitution Property of Equality

Subtraction Property of Equality

Definition of congruent segments

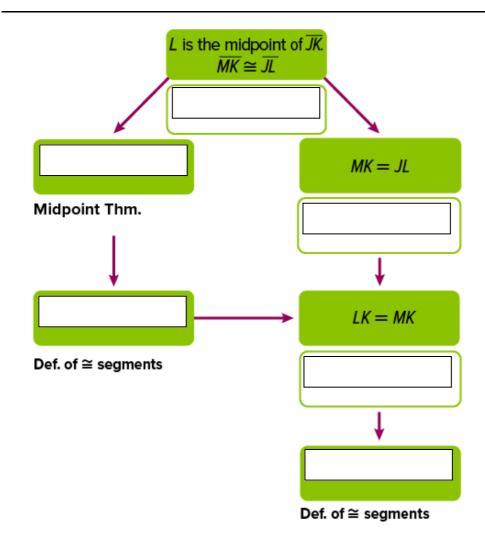
Symmetric Property of Equality

Addition Property of Equality

Given

Division Property of Equality

3) PROOF Point L is the midpoint of \overline{JK} . \overline{JK} intersects \overline{MK} at K. If $\overline{MK}\cong \overline{JL}$, complete the flow proof to prove that $\overline{LK}\cong \overline{MK}$. Drag the statements and reasons to complete the proof.



- Given
- JL = LK
- Transitive Prop. of =

- $\overline{LK} \cong \overline{MK}$
- $\overline{JL} \cong \overline{LK}$
- Def. of ≅ segments
- 4) Fill in the blanks using the available answer choices.

PROOF In the figure, point B is the midpoint of \overline{AC} and point C is the midpoint of \overline{BD} .

Complete the paragraph proof to prove that AB = CD.

Given: B is the midpoint of \overline{AC} . C is the midpoint of \overline{BD} .

Prove: AB = CD

Proof: Because B is the midpoint of \overline{AC} and ______ is the midpoint of \overline{BD} , we know by

that $\overline{AB}\cong \overline{BC}$ and $\overline{BC}\cong \overline{CD}$. Because

congruent segments have _____ measures, AB = BC and _____. Thus, _____ . Thus,

AB = CD. by the (Blank 5)

Blank 1 options Blank 2 options

- C
- D

- Bisector Theorem
- definition of congruent segments

Blank 4 options

- AC = CD
- BC = CD
- CD = BD

- Midpoint Theorem

Blank 5 options

- Reflexive Property of Equality
- Transitive Property of Equality
- Symmetric Property of Equality

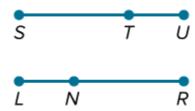
Blank 3 options

- different
- equal

5) PROOF Complete the two-column proof. The statements are provided on the left. Drag the reasons to the corresponding statements.

Given: $\overline{\underline{SU}} \cong \overline{\underline{LR}}$ $\overline{TU} \cong \overline{LN}$

Prove: $\overline{ST} \cong \overline{NR}$



Proof:

1. $\overline{SU} \cong \overline{LR}, \ \overline{TU}$ $\cong \overline{LN}$

2. SU = LR, TU = LN

3. SU = ST + TULR = LN + NR

4. ST + TU = LN + NR

5. ST + LN = LN + NR

6. ST + LN - LN = LN + NR - LN

 $\mathbf{7.} ST = NR$

8. $\overline{ST} \cong \overline{NR}$

Substitution Property (3rd use)

Substitution Property (2nd use)

Segment Addition Postulate

Given

Substitution Property (1st use)

Definition of \cong segments (2nd use)

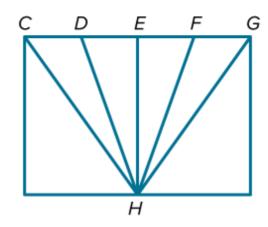
Definition of \cong segments (1st use)

Subtraction Property

6) PROOF Complete the two-column proof to prove the given geometric relationship. Drag the missing statements and reasons into the correct order.

Given: E is the midpoint of \overline{DF} and $\overline{CD}\cong \overline{FG}$.

Prove: $\overline{CE}\cong \overline{EG}$



Proof:

Statements	Reasons
1. ?	1. Given
2. DE = EF	2. ?
3. CD = FG	3. ?
4. CD + DE = EF + FG	4. ?
5. ?	5. Segment Addition Postulate
6. ?	6. Substitution Property
7. <i>CE</i> ≅ <i>EG</i>	7. ?

1) _____

2) _____

3) _____

4) _____

5) _____

6)

7) _____

Definition of midpoint

Addition Property of Equality

CE = CD + DE and EG = EF + FG

CE = EG

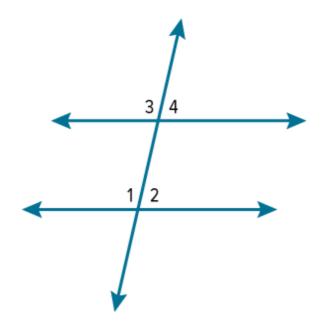
E is the midpoint of \overline{DF} and $\overline{CD}\cong \overline{FG}$.

Definition of \cong segments (1st use)

Definition of \cong segments (2nd use)

7) **PROOF** Complete the two-column proof by dragging the statements and reasons.

Given: $\angle 1 \cong \angle 3$ Prove: $\angle 2 \cong \angle 4$



Proof:

Statements

Reasons

- ∠1 and ∠2 form a linear pair.
 ∠3 and ∠4 form a linear pair.
- 1.

- 2.
- 2. Supplement Thm.

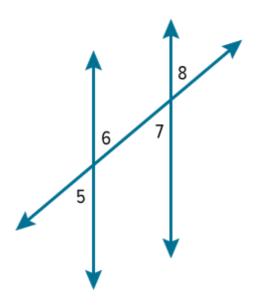
3. ∠1 ≅ ∠3

3.

- 4.
- 4.

- ∠1 and ∠2 are supp.
 ∠3 and ∠4 are supp.
- ∠2 ≅ ∠4
- Def. of linear pair
- Given
- **8) PROOF** Complete the two-column proof. The statements are provided on the left. Drag the reasons to the corresponding statements.

Given: $\angle 5 \cong \angle 7$ Prove: $\angle 5 \cong \angle 8$



Proof:

- **1.** ∠5 ≅ ∠7 _____
- **2.** ∠7 ≅ ∠8
- **3.** ∠5 ≅ ∠8 _____

Vertical Angles Theorem

Transitive Prop. of Congruence

Supplements Theorem

Given

 \cong Supplements Theorem

9) PROOF Complete the two-column proof by dragging the statements and reasons.

Given: $\angle 1 \cong \angle 2$; $m \perp p$ Prove: $\angle 2 \cong \angle 3$



Proof:

Statements

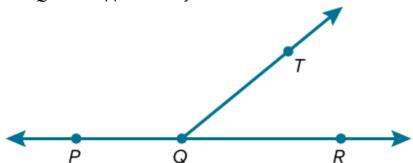
Reasons

- **1.** $\angle 1 \cong \angle 2$; $m \perp p$
- 1.
- 2.
- 2. Def. of linear pair
- 3.
- **3.** If $2 \cong \angle s$ form a linear pair, they are right $\angle s$.
- **4.** ∠3 is a right angle.
- 4.
- 5.
- 5. All right ∠s are congruent.
- ∠1 and ∠2 are rt. ∠s.
- ⊥ lines form 4 rt. ∠s.
- Given
- ∠2 ≅ ∠3
- ∠1 and ∠2 form a linear pair.

10) PROOF Complete the two-column proof for the given theorem by dragging the missing statements and reasons into the correct order.

Supplement Theorem

Given: $\angle PQT$ and $\angle TQR$ form a linear pair. **Prove:** $\angle PQT$ and $\angle TQR$ are supplementary.



Proof:

Statements	Reasons
1. $\angle PQT$ and $\angle TQR$ form a linear pair.	1. ?
2. ?	2. Given from figure
3. ?	3. Def. of straight angle
4. $m \angle PQT + m \angle TQR = m$ $\angle PQR$	4. ?
5. ?	5. Substituti on
6. $\angle PQT$ and $\angle TQR$ are supplementary.	6. ?

1)		
2)		

$$m \angle PQT + m \angle TQR = 180^{\circ}$$

 $\angle PQR$ is a straight angle.

Angle Add. Post.

Def. of supp. angles

Given

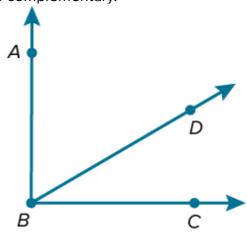
$$m \angle PQR = 180^{\circ}$$

11) PROOF Complete the two-column proof for the given theorem by dragging the missing statements and reasons into the correct order.

Complement Theorem

Given: $\angle ABC$ is a right angle.

Prove: $\angle ABD$ and $\angle CBD$ are complementary.



Proof:

11001.				
Statements	Reasons			
1. ?	1. Given			
$2. m \angle ABC = 90^{\circ}$	2. ?			
3. ?	3. Angle Add. Post.			
4. ?	4. Substitution			
5. ∠ABD and ∠CBD are complementary.	5. ?			

$$m \angle ABC = m \angle ABD + m \angle CBD$$

$$\angle ABC$$
 is a right angle.

$$m\angle ABD + m\angle CBD = 90^{\circ}$$