Lesson 1.5 Locating Points Using Weighted Averages

Monday, September 04, 2023 12:29 PM

Click Link Below to Open the Interactive Pear Deck PowerPoint

https://app.peardeck.com/student/tdknbzuxr

Lesson 1.5 Locating Points Using Weighted Averages

Workbook pages 42-48

Content Objective

Students will locate points on a number line and a coordinate plane by using weighted averages.

MA.912.GR.3.1

Determine the weighted average of two or more points on a line.

MA.912.GR.3.3

Use coordinate geometry to solve mathematical and real-world geometric problems involving lines, circles, triangles and quadrilaterals.

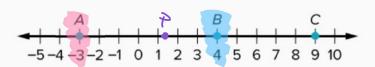
Copyright @ McGraw Hill

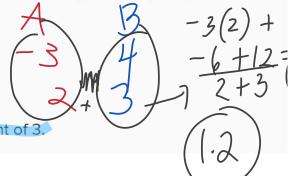

This material may be reproduced for licensed classroonly and may not be further reproduced or distr

Example 1: Find a Weighted Average on a Number Line

Find the coordinate of P that represents the weighted average for each set of points with the given conditions.

a. Enter your answers.

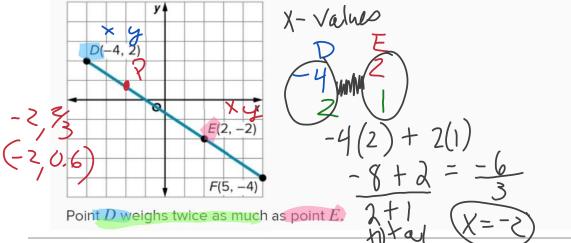

Point C weighs twice as much as point D.


 $\frac{-6+2}{2+1} = \frac{-4}{3}$

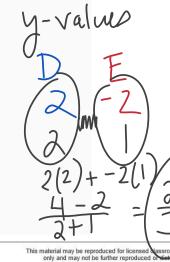
Example 1 Check

Find the coordinate of P that represents the weighted average for the point, based on the given conditions.

Point A has a weight of 2, and point B has a weight of 3.

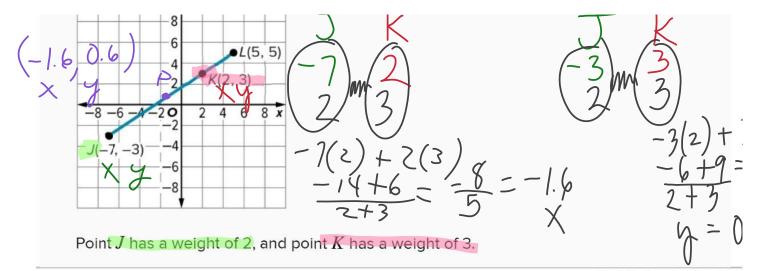


Copyright @ McGraw Hill


This material may be reproduced for licensed classro only and may not be further reproduced or distr

Example 2: Find a Weighted Average on the Coordinate Plane

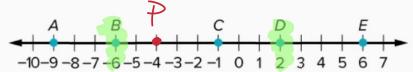
Find the coordinate of P that represents the weighted average for the point, based on the given conditions.



Copyright @ McGraw Hill

Example 2 Check

Find the coordinate of P that represents the weighted average for the point, based on the given conditions.

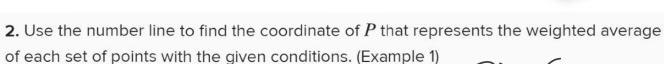


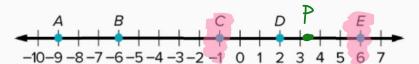
Copyright @ McGraw Hill

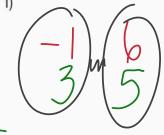
This material may be reproduced for licensed classro only and may not be further reproduced or dist

Practice

1. Use the number line to find the coordinate of P that represents the weighted average of each set of points with the given conditions. (Example \mathcal{Y}

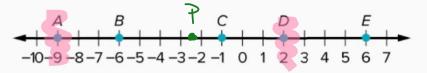



Point B weighs three times as much as point D.

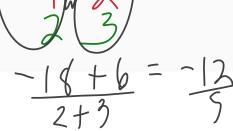

Copyright @ McGraw Hill

This material may be reproduced for licensed classro only and may not be further reproduced or dist

Point C has a weight of 3, and point E has a weight of 5.

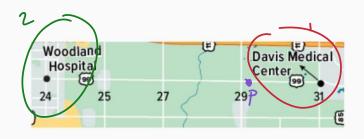

 $\frac{-3 + 31}{3 + 5} = \frac{2}{3}$

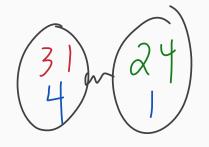
Copyright @ McGraw Hill


This material may be reproduced for licensed classro only and may not be further reproduced or distr

3. Use the number line to find the coordinate of P that represents the weighted average of each set of points with the given conditions. (Example 1)

Point A has a weight of 2, and point D has a weight of 3.




Copyright @ McGraw Hill

This material may be reproduced for licensed classroonly and may not be further reproduced or distr

9. AMBULANCE

Some ambulances use weighted averages to find where to park between cities. The weight of a hospital is determined by the average number of emergent patients that need to be taken to the hospital on a daily basis. (Example 3)

124+2

a. The <u>Davis Medical Center usually has a weight 4 times that of Woodland Hospital</u>. Where should the ambulance park?