Special Right Triangles P2

Tuesday, April 04, 2023 7:48 PM

Click Link Below for Interactive Pear Deck Powerpoint

https://app.peardeck.com/student/teiaxaosk

Special Right Triangles

Workbook pages 135-137

Copyright @ McGraw Hill

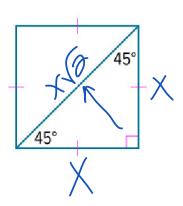
This material may be reproduced for licensed classroomuse

MA.912.T.1.2

Solve mathematical and real-world problems involving right triangles using trigonometric ratios and the Pythagorean Theorem.

Content Objective

Students will solve problems by using the properties of $45^{\circ} - 45^{\circ} - 90^{\circ}$ and $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangles.

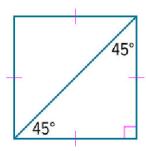

McGraw Hill | Special Right Triangles

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed

Learn

$$45^{\circ} - 45^{\circ} - 90^{\circ}$$
 Triangles

The diagonal of a square forms two congruent isosceles right triangles. Because the base angles of an isosceles triangle are congruent, the measure of each acute angle is $90^{\circ} \div 2$ or 45° . Such a special right triangle is known as a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle.

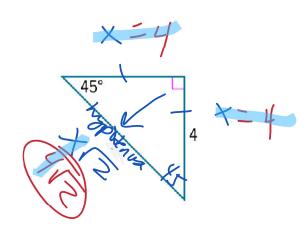


Learn

 $45^{\circ} - 45^{\circ} - 90^{\circ}$ Triangles

Theorem 9.5: $45^{\circ} - 45^{\circ} - 90^{\circ}$ Triangle Theorem

In a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle, the legs ℓ are congruent and the length of the hypotenuse h is $\sqrt{2}$ times the length of a leg.

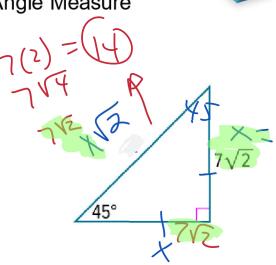

McGraw Hill | Special Right Triangles

This material may be reproduced for licensed classroomuse

Example 1

Find the Hypotenuse Length Given an Angle Measure

Find the value of x.

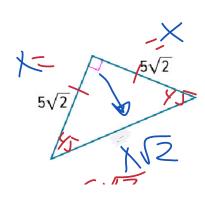


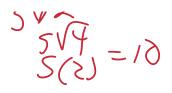
Example 1

Find the Hypotenuse Length Given an Angle Measure

Check

Find the value of x.


McGraw Hill | Special Right Triangles

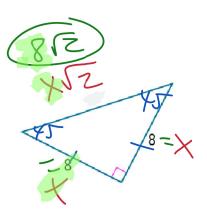

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Example 2

Find the Hypotenuse Length Given a Side Measure

Find the value of x.

McGraw Hill | Special Right Triangles


This material may be reproduced for licensed classroomuse

Example 2

Find the Hypotenuse Length Given a Side Measure

Check

Find the value of x.

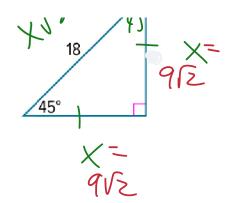
McGraw Hill | Special Right Triangles

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Example 3

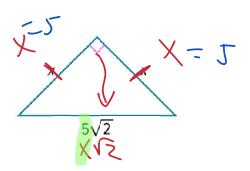
Find Leg Lengths in a $45^{\circ} - 45^{\circ} - 90^{\circ}$ Triangle

Find the value of x.



$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{2}$$

McGraw Hill | Special Right Triangles


This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Example 3

Find Leg Lengths in a $45^{\circ} - 45^{\circ} - 90^{\circ}$ Triangle

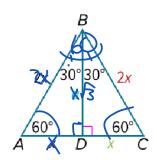
Check

Find the value of x.

McGraw Hill | Special Right Triangles

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Learn


 $30^{\circ} - 60^{\circ} - 90^{\circ}$ Triangles

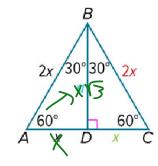
A $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle is a special right triangle or right triangle with side lengths that share a special relationship. You can use an equilateral triangle to find this relationship.

When an altitude is drawn from any vertex of an equilateral triangle, two congruent $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangles are formed. In the figure,

 $\triangle ABD \cong \triangle CBD$, so $\overline{AD} \cong \overline{CD}$. If AD = x, then CD = x and AC = 2x. Because $\triangle ABC$ is equilateral, AB = 2x and BC = 2x.

(continued on the next slide)

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed

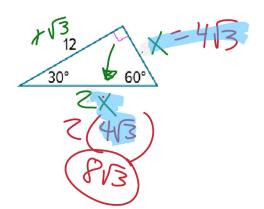

Learn

McGraw Hill | Special Right Triangles

$$30^{\circ} - 60^{\circ} - 90^{\circ}$$
 Triangles

Use the Pythagorean Theorem to find a, the length of the altitude \overline{BD} , which is also the longer leg of $\triangle BDC$.

$$a^2 + x^2 = (2x)^2$$
 Pythagorean Theorem $a^2 + x^2 = 4x^2$ Simplify. Subtract x^2 from each side. $a = x\sqrt{3}$ Simplify.

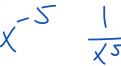


Example 4

Find Leg Lengths in a $30^{\circ} - 60^{\circ} - 90^{\circ}$ Triangle

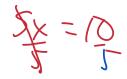
Find the values of x and y.

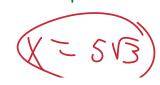
$$\frac{X\sqrt{3}}{\sqrt{3}} = \frac{12}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{12\sqrt{3}}{3}$$

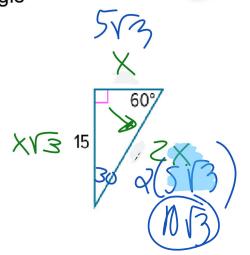

McGraw Hill | Special RightTriangles

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Example 4


Find Leg Lengths in a $30^{\circ} - 60^{\circ} - 90^{\circ}$ Triangle





Find the values of x and y.

$$\frac{\sqrt{3}}{\sqrt{3}} = \frac{15}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{15\sqrt{3}}{3}$$

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

McGraw Hill | Special Right Triangles