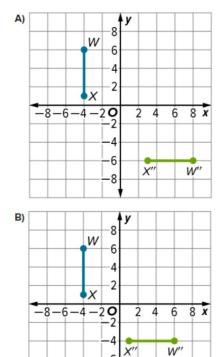
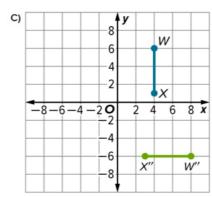
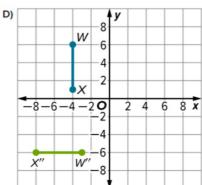

Consider the line segments shown.

Which transformation maps Figure A to Figure B?


- O A) reflection in the y-axis
- O B) reflection in the x-axis
- O c) translation of 4 units down
- O $\,$ D) counterclockwise rotation by 90° about the origin

The coordinates of the image of a point with coordinates (1, 4) is (4, -4).


Use the information to complete the transformation rule.


$$(x, y) \longrightarrow (x + \boxed{\text{Select Choice } \checkmark}, y - \boxed{\text{Select Choice } \checkmark})$$

Graph \overline{WX} with endpoints W(-4, 6) and X(-4, 1) and its image after the composition of a reflection in the x-axis and a rotation counterclockwise 90° about the origin.

-6

A rectangle is shown.

Which transformations will map the rectangle to itself? Select all that apply.

A) 90° rotation about its center

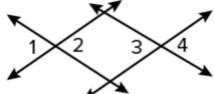
B) 180° rotation about its center

C) 270° rotation about its center

D) reflection in a horizontal line through its center

F) reflection in a vertical line through its center

☐ F) reflection in a diagonal line through its center

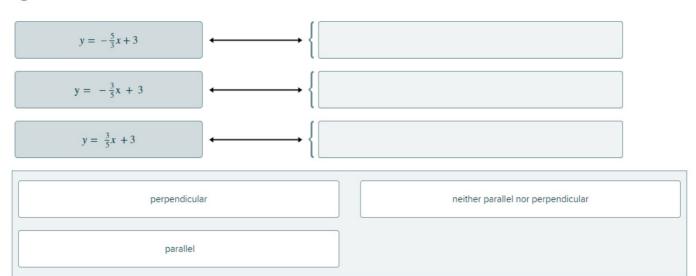

Question 5			
The coordinates of the image of point $P(4,$	-5) after the transformation	$(x, y) \longrightarrow (-x,$	− y) are

On a number line, M is located at -5 and N is located at 3. The midpoint of \overline{MN} is located at \overline{N}

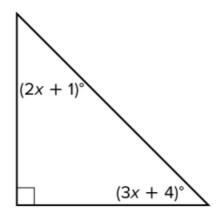
Question 7
Find the measures of two complementary angles if the measure of the larger angle is 2 less than 3 times the measure of the smaller angle.
The measure of the smaller angle is o, and the measure of the larger angle is o.

Complete the proof by selecting the missing reasons.

Given: $\angle 2 \cong \angle 3$ Prove: $\angle 1 \cong \angle 4$

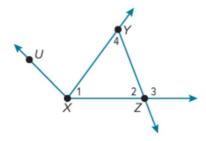

	Statements	Reasons	
1.	∠2 ≅ ∠3	 Given 	
2.	∠1 ≅ ∠2	2. Select Choice	~
3.	∠3 ≅ ∠4	3. Select Choice	~
4.	∠1 ≅ ∠4	4. Select Choice	~

B is the midpoint of \overline{AC} , where the coordinates of A are (2, 8) and the coordinates of B are (-2, 2). What are the coordinates of C?

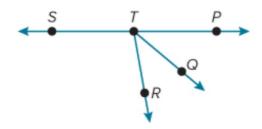

- O A) (-6, -4)
- O B) (0, 5)
- O c) (0, 10)
- O D) (6, 14)

Line m is represented by $y=\frac{3}{5}x-3$. Match each equation to the term that accurately describes its relationship to line m.

(i) Instructions

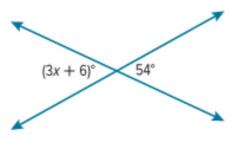


The angle measures of the right triangle are shown. Find the value of x.

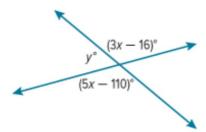

 $x = \int_{0}^{x}$

Use the figure to name the vertex of $\angle 3$.

- OA)Z
- O B) X
- O C) Y
- O D) U


In the figure, \overrightarrow{TP} and \overrightarrow{TS} are opposite rays. \overrightarrow{TQ} bisects $\angle RTP$.

If $m \angle PTQ = 12x + 4$ and $m \angle RTQ = 15x - 5$, find $m \angle RTP$.



Find the value of x.

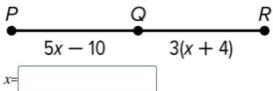
Find the values of x and y.

$$x =$$

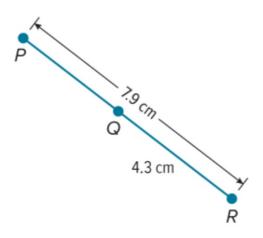
What is the contrapositive of the statement "If a triangle is a right trianlge, then it has a right angle."?

- O A) If a triangle has a right angle, then it is a right triangle.
- O B) If a triangle is a right triangle, then it has a right angle.
- O C) If a triangle is not a right triangle, then it does not have a right angle.
- O D) If a triangle does not have a right angle, then it is not a right triangle.

Indicate whether each statement is the converse, inverse, or contrapositive of the given statement.

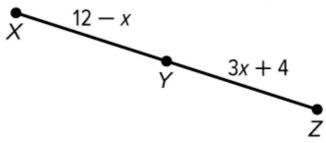

If a quadrilateral is a parallelogram, then the diagnals bisect each other.

If a quadrilateral is not a parallelogram, then its diagonals do not bisect each other. Select Choice

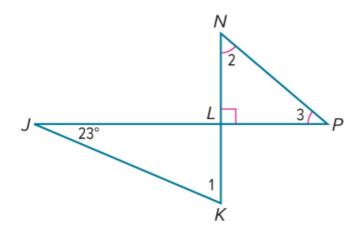

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram. Select Choice

If the diagonals of a quadrilateral do not bisect each other, then it is not a parallelogram. Select Choice 🗸

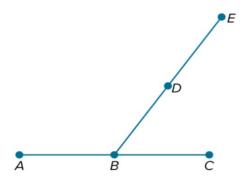
Find the value of x if Q is between P and R, PQ=5x-10, QR=3(x+4), and $\overline{PQ}\cong \overline{QR}$.



Find the measure of \overline{PQ} .


cm

Find the measure of \overline{YZ} if Y is the midpoint of \overline{XZ} .

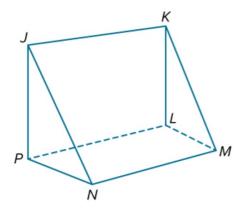


- O A) 2
- O B) 10
- O C) 16
- O D) 20

Find the measure of each numbered angle.

PROOF Complete the two-column proof to prove the geometric relationship. Drag the missing statements and reasons into the correct order.

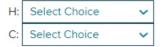
Given: B is the midpoint of \overline{AC} . D is the midpoint of \overline{BE} .


 $\overline{BC} \cong \overline{BD}$ Prove: $\overline{AC} \cong \overline{BE}$

Proof:

Statements Reasons	
1. ?	1. Given
2. AB = BC $BD = DE$	2. ?
3. ?	3. Definition of Congruent Segments
4. AC = AB + BC $BE = BD + DE$	4. ?
5. AC = BC + BC $BE = BD + BD$	5. Substitution Property
6. ?	6. Substitution Property
7. AC = 2BD	7. Substitution Property
8. AC = BE	8. Substitution Property
9. $\overline{AC} \cong \overline{BE}$	9. ?

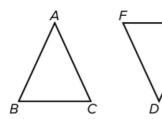
AC = 2BC $BE = 2BD$	
B is the midpoint of \overline{AC} . D is the midpoint of \overline{BE} . $\overline{BC}\cong \overline{BD}$	
Definition of midpoint	
Definition of ≅ Segments	
Segment Addition Postulate	
BC = BD	

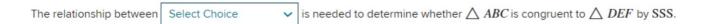

Identify two segments skew to \overline{MN} using the figure shown. Assume that lines and planes that appear to be parallel or perpendicular are paral respectively.

- O A) \overline{JN} and \overline{KM}
- O B) \overline{JP} and \overline{KL}
- O C) \overline{JK} and \overline{PL}
- O D) \overline{PN} and \overline{LM}

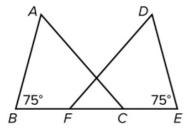
Identify the hypothesis and conclusion of the conditional statement. (Assume H and C are hypothesis and conclusion.)

"If there is no struggle, there is no progress." (Frederick Douglass).

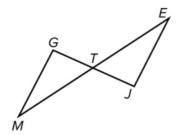



Identify the hypothesis and conclusion for the conditional statement. Then write the statement in if-then form.

Get a free water bottle with a one-year membership.

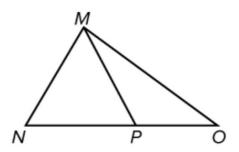


A student is trying to prove that \triangle ABC and \triangle DEF are congruent. If $\overline{FE} \cong \overline{CB}$ and $\overline{ED} \cong \overline{BA}$, 1then which piece of information is needed to prove whether the two triangles are congruent by SSS?


In the figure, $\overline{FB}\cong \overline{CE}$ and $\overline{ED}\cong \overline{BA}$.

Which statement explains the criterion that can be used to prove that \triangle $ABC \cong \triangle$ DEF?

- A) SSS should be used because the three sides of \triangle ABC are congruent to the three sides of \triangle DEF.
- **B)** HL should be used because the hypotenuse and leg of \triangle ABC are congruent to the hypotenuse and leg of \triangle DEF.
- C) SAS should be used because two sides and the included angle of \triangle ABC are congruent to two sides and the included angle of \triangle DEF.
- **D)** ASA should be used because two angles and the included side of \triangle ABC are congruent to two angles and the included side of \triangle DEF.


In the diagram, T is the midpoint of \overline{ME} and \overline{GJ} .

Complete the given proof to show \triangle $MTG \cong \triangle$ ETJ.

Statements		Reasons
1. T is the midpoint of \overline{ME} and \overline{GJ} .	1. Given	
2. $\overline{MT} \cong \overline{ET}$ and $\overline{GT} \cong \overline{JT}$.	2. Select Choice	
$3. \ \angle MTG \cong \angle ETJ$	3. Select Choice	~
$4. \triangle MTG \cong \triangle ETJ$	4. Select Choice 🗸	

In \triangle MNP, $\overline{MN} \cong \overline{MP}$ and $m \angle NMP = 56^{\circ}$.

If $\overline{MP} \cong \overline{PO}$, then $m \angle MPO = \bigcirc$