
# MODULE STRIPLENCY FEST REVIEW GEOMETRY



Part A: find the measure of angle Z and angle Y

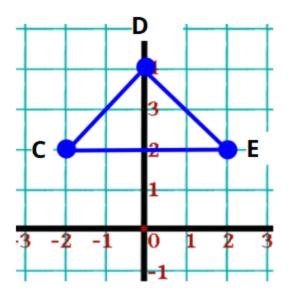
Part B: Find the value of x

Part C: Find the length of XY.

ARCHITECTURE In an A-Frame house, the roof extends to the ground level. If each side of the roof meets the ground at a 62° angle, what will be the measure of the angle where the two sides of the roof meet?



The angle measure will be \_\_\_\_\_\_°.




Find the measure of the sides of triangle CDE.

What kind of triangle is this?

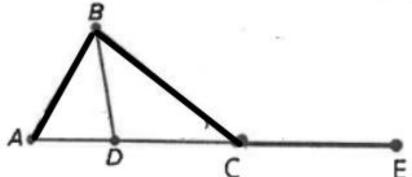
If angle C is 25 degrees determine the measures of angles D and E.

$$\sqrt{\left(x_2-x_1
ight)^2+\left(y_2-y_1
ight)^2}$$





In  $\triangle PQR$ , PQ = QR. If  $m \angle P = (3x - 120)$  and  $m \angle R = (x - 30)$ , classify  $\triangle PQR$ .

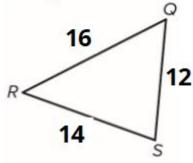

Part A: What type of triangle is this?

Part B: What is the value of x?

Part C: Determine the angle measures of <Q, <P, and <R.



What is  $m \angle CBD$ ? What is the m<BCE? <BAD = 40





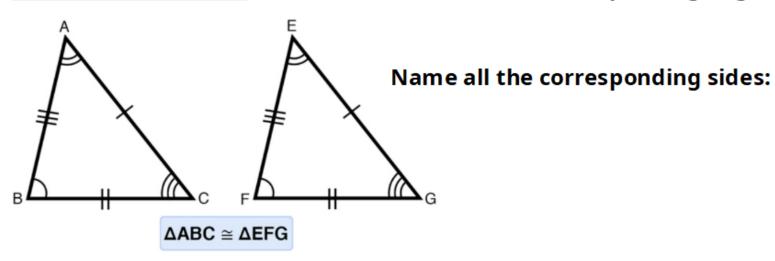

$$<$$
BDA = 75

$$<$$
BCD = 25

If a series of rigid transformations maps  $\triangle QRS$  onto  $\triangle MPN$ , match each side of triangle MPN with its length.



Which additional statements can be used to prove  $\triangle ABC \cong \triangle LKM$  using the AAS Theorem, if  $\angle B \cong \angle K$ ? Select all that apply.

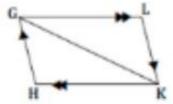

D. 
$$\overline{BC} \cong \overline{KM}$$

B. 
$$\angle C \cong \angle M$$
 E.  $\overline{AC} \cong \overline{LM}$ 

C. 
$$\overline{AB} \cong \overline{LK}$$

# **Congruent Triangles**

## Name all the corresponding angles:




In  $\triangle ABC$ ,  $m \angle A = 37^{\circ}$  and  $m \angle B = 89^{\circ}$ . What is  $m \angle C$ ?



Given: GH | KL, GL | KH

Prove: ∠H ≅ ∠L



| STATEMENTS            | REASONS               |
|-----------------------|-----------------------|
| 1. GH    KL, GL    KH | 1.                    |
| 2.                    | 2.                    |
| 3.                    | 3. Reflexive Property |
| 4. ΔGKH ≅ ΔKGL        | 4.                    |
| 5.                    | 5. CPCTC              |

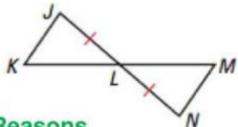
 $< HGK \cong < LKG$ and  $< LGK \cong < HKG$ 

 $\overline{GK} \cong \overline{KG}$ 

ASA

 $< H \cong < L$ 

Given






Write a two-column proof that shows  $\triangle JKL \cong \triangle NML$ .

Given 
$$\triangleright \overline{JL} \cong \overline{NL}$$
  
 $L$  is the midpoint of  $\overline{KM}$ .

**Prove** 
$$\triangleright \triangle JKL \cong \triangle NML$$



### <u>STATEMENTS</u>

1. 
$$\overline{JL} \cong \overline{NL}$$

2.

3. 
$$\angle JLK \cong \angle NLM$$

4.

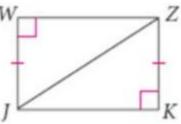
5. 
$$\triangle JKL \cong \triangle NML$$

### Reasons

1.

2. Given

3.


4. Definition of Midpoint

5.



Given:  $\overline{WJ} \cong \overline{KZ}$ ,  $\angle W$  and  $\angle K$  are right angles.

Prove:  $\triangle JWZ \cong \triangle ZKJ$ 



| Statements                                           | Reasons                        |
|------------------------------------------------------|--------------------------------|
| 1                                                    | 1 Given                        |
| <b>2</b> $\angle W$ and $\angle K$ are right angles. | 2                              |
| 3                                                    | 3 Definition of right triangle |
| $\overline{JZ} \cong \overline{JZ}$                  | 4                              |
| $\Delta JWZ \cong \Delta ZKJ$                        | 5                              |





Given:  $\overline{EF} \cong \overline{EH}, \overline{FG} \cong \overline{HG}$ 

 $E \xrightarrow{F} G$ 

Prove:  $\Delta EFG \cong \Delta EHG$ 

| Statements | Reasons |
|------------|---------|
| 1.         | 1.      |
| 2.         | 2.      |
| 3.         | 3.      |



