Sunday, February 5, 2023 7:40 PM

Click Link Below for Interactive Pear Deck Powerpoint

https://app.peardeck.com/student/ticecmefs

Lesson 6.1 Perpendicular Bisectors Lesson 6.2 Angle Bisectors

Content Objective

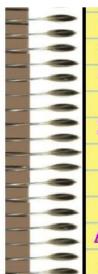
Students solve problems using perpendicular bisectors in triangles.

Students solve problems using angle bisectors.

Copyright @ McGraw Hill

This material may be reproduced for licensed classro only and may not be further reproduced or dist

Florida's B.E.S.T. Standards for Mathematics


MA.912.GR.1.1 Prove relationships and theorems about lines and angles. Solve mathematical and real-world problems involving postulates, relationships and theorems of lines and angles.

MA.912.GR.3.3 Use coordinate geometry to solve mathematical and real-world geometric problems involving lines, circles, triangles and quadrilaterals.

MA.912.GR.5.2 Construct the bisector of a segment or an

McGraw Hill | Perpendicular Bis ectors

This material may be reproduced for licensed classro only and may not be further reproduced or dist

Learning Intent (Target): Today I will be able to

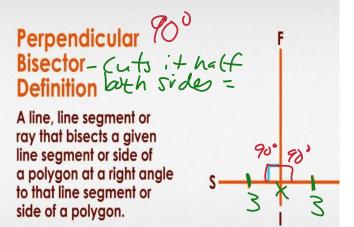
use perpendicular bisectors to find measures. Use angle bisectors to find measures and distance relationships. Write equations for perpendicular bisecto

Success Criteria: <u>I'll know I'll have it when</u> I can accurately determine measures of the distance between segments of perpendicular bisectors and angle bisectors.

Accountable Team Task: Therefore, I can practice

using interactive powerpoint for notes and invstigations using geogebra.

McGraw Hill | Perpendicular Bisectors

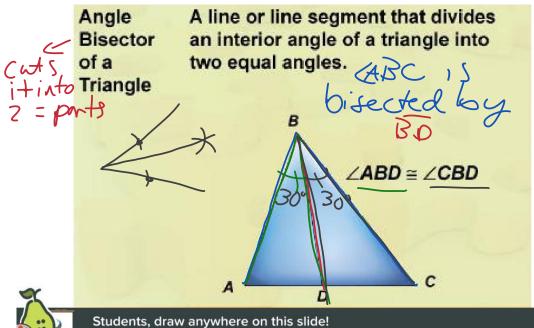

This material may be reproduced for licensed classro only and may not be further reproduced or dist

Learn

Perpendicular Bisectors of Segments

A perpendicular bisector

is a line, segment, or ray that passes through the midpoint of a segment and is perpendicular to that segment.

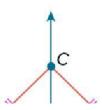


Students, draw anywhere on this slide!

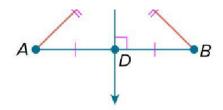
Pear Deck Interactive Slide Do not remove this bar

Click the link below to complete the Geogebra Investigations

Students browse: https://www.geogebra.org/classic


Pear Deck Interactive Slide Do not remove this bar

Learn


Perpendicular Bisectors of Segments

Theorem 6.1: Perpendicular Bisector Theorem

Words	If a point is on the				
	perpendicular bisector of a				
	segment, then it is				
	equidistant from the				

	endpoints of the segment.			
100	If \overline{CD} is a \perp bisector of \overline{AB} , then $AC = BC$.			

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Learn

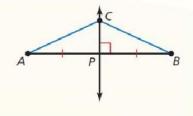
Perpendicular Bisectors of Segments

Theorem 6.2: Converse of the Perpendicular **Bisector Theorem**

Words	If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.			
Example	In the triangle above, if $AC = BC$, then C lies on the \bot bisector of \overline{AB} .			

Students, draw anywhere on this slide!

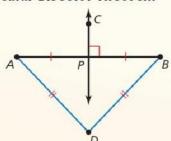
Pear Deck Interactive Slide Do not remove this bar



Theorem 6.1 Perpendicular Bisector Theorem

In a plane, if a point lies on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If \overrightarrow{CP} is the \perp bisector of \overrightarrow{AB} , then $\overrightarrow{CA} = \overrightarrow{CB}$.



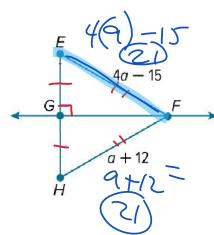
Proof p. 302

Theorem 6.2 Converse of the Perpendicular Bisector Theorem

In a plane, if a point is equidistant from the endpoints of a segment, then it lies on the perpendicular bisector of the segment.

If DA = DB, then point D lies on the \perp bisector of \overline{AB} .

Proof Ex. 32, p. 308



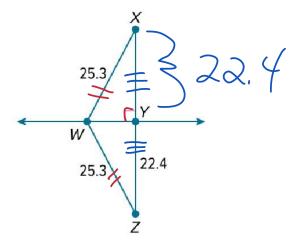
Example 1

Use the Perpendicular Bisector Theorem

4a-15= a+12 +15 +15

 $\frac{4a-24+27}{3a-27}$ $\frac{3a-27}{3-9}$

Students, draw anywhere on this slide!


Pear Deck Interactive Slide Do not remove this bar

Example 2

Use the Converse of the Perpendicular Bisector Theorem

Find XY.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar

Learn

Angle Bisectors

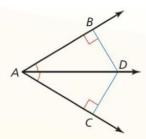
Theorem 6.5: Converse of the Angle Bisector Theorem

vvoius	from the sides of the angle, then it is on the bisector of the angle.			
Example	If $\overrightarrow{FD} \perp \overrightarrow{BD}$, $\overrightarrow{FE} \perp \overrightarrow{BE}$, and $DF = FE$, then \overrightarrow{BF} bisects $\angle DBE$.			

McGraw Hill | Angle Bisectors

This material may be reproduced for lick only and may not be further repro-

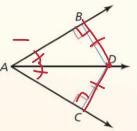
Pear Deck Interactive Slide Do not remove this bar


Students, draw anywhere on this slide!

Theorem 6.3 Angle Bisector Theorem

If a point lies on the bisector of an angle, then it is equidistant from the two sides of the angle.

If \overrightarrow{AD} bisects $\angle BAC$ and $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$, then DB = DC.

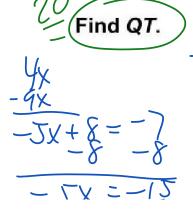

Proof Ex. 33(a), p. 308

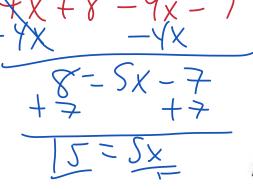
Theorem 6.4 Converse of the Angle Bisector Theorem

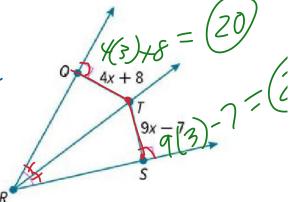
If a point is in the interior of an angle and is equidistant from the two sides of the angle, then it lies on the bisector of the angle.

If $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$ and $\overrightarrow{DB} = \overrightarrow{DC}$, then \overrightarrow{AD} bisects $\angle BAC$.

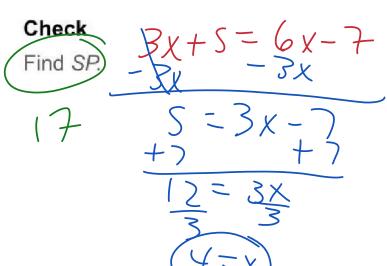
Proof Ex. 33(b), p. 308

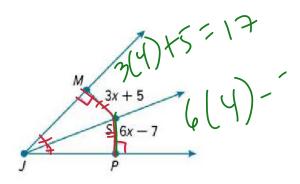



Students, draw anywhere on this slide!


Pear Deck Interactive Slide Do not remove this bar

Use the Angle Bisector Theorem

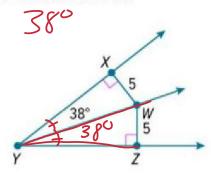


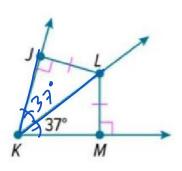


Example 1

Use the Angle Bisector Theorem

Students, draw anywhere on this slide!


Students, draw anywhere on this slide!


Example 2

Use the Converse of the Angle Bisector Theorem

Find m∠ZYW.

Find *m∠JKL*.

