Sunday, January 22, 2023 4:43 PM

Click Link Below for Interactive Pear Deck Powerpoint

https://app.peardeck.com/student/txghzvchv

Lesson 5.4 Proving Triangles Congruent: ASA, AAS

Workbook pages 303-306

Content Objective Students will use ASA and AAS to prove triangles congruent.

Copyright @ McGraw Hill

This material may be reproduced for licensed classroonly and may not be further reproduced or distr

Florida's B.E.S.T. Standards for Mathematics

MA.912.GR.1.2 Prove triangle congruence or similarity using Side-Side-Side, Side-Angle-Side, Angle-Side-Angle, Angle-Angle-Side, Angle-Angle and Hypotenuse-Leg.

MA.912.GR.1.3 Prove relationships and theorems about triangles. Solve mathematical and real-world problems involving postulates, relationships and theorems of triangles.

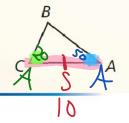
MA.912.GR.1.6 Solve mathematical and real-world problems involving congruence or similarity in two-

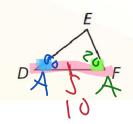
McGraw Hill | Proving Triangles Congruent: ASA, AAS

This material may be reproduced for licensed classro only and may not be further reproduced or disti

Learn

Proving Triangles Congruent: ASA




Theorem 5.10 Angle-Side-Angle (ASA) Congruence Theorem

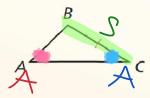
If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

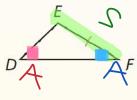
If
$$\angle A \cong \angle D$$
, $\overline{AC} \cong \overline{DF}$, and $\angle C \cong \angle F$, then $\triangle ABC \cong \triangle DEF$.

Proof p. 270

McGraw Hill | Proving Triangles Congruent: ASA, AAS

This material may be reproduced for licensed classroonly and may not be further reproduced or distr




Theorem 5.11 Angle-Angle-Side (AAS) Congruence Theorem

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

If
$$\angle A \cong \angle D$$
, $\angle C \cong \angle F$, and $\overline{BC} \cong \overline{EF}$, then $\triangle ABC \cong \triangle DEF$.

Proof p. 271

McGraw Hill | Proving Triangles Congruent: ASA, AAS

This material may be reproduced for licensed classro only and may not be further reproduced or dist

Example 1

Use ASA to Prove Triangles Congruent Write a proof.

Given: $\angle BAC \cong \angle DEC$; \overline{BD} bisects \overline{AE} .

Prove: $\triangle ACB \cong \triangle ECD$

Statements

- 1. $\angle BAC \cong \angle DEC$
- 2. \overline{BD} bisects \overline{AE} .
- 3 ACTEC
- 4. ∠ACB ≅ ∠ECD
- 5 A(B=E(D)

- 1. Given
- 2 Given
- 3. Definition of segment bisector
 4. Vertical Arges
 5. ASA

Reasons

McGraw Hill | Proving Triangles Congruent: ASA, AAS

This material may be reproduced for licensed classro only and may not be further reproduced or dist

Example 1

Use ASA to Prove Triangles Congruent/

Complete the proof.

Given: $\overline{WX} \| \overline{YZ}$ and $\overline{WZ} \| \overline{YX}$

Prove: $\triangle WXZ \cong \triangle YZX$

Statements

- 1. WXIIYZ
- 2. $\overline{WZ} \| \overline{YX}$
- $3. \angle WXZ \cong \angle YZX$
- 4WZX=4XZ
- 5. XZ=
- 6. △WXZ ≅ △YZX

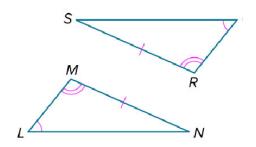
- 1. Given
- 2. Given
- 3. Alternate Interior Angles
- 4. Alternate Interior Angles Theorem

Reasons

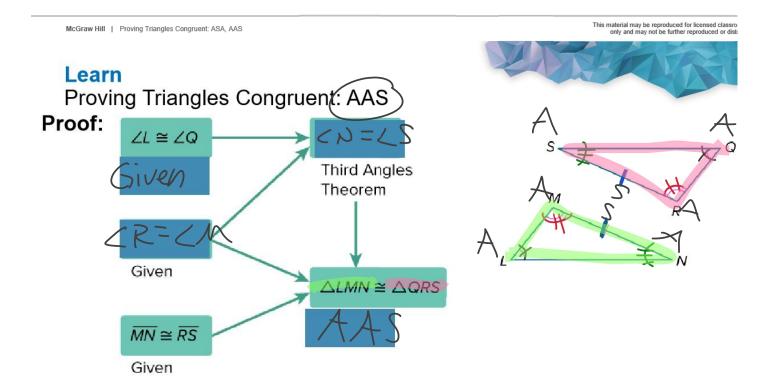
- 5. Reflexive Property of Congruence

McGraw Hill | Proving Triangles Congruent: ASA, AAS

This material may be reproduced for licensed classro only and may not be further reproduced or dist


Learn

Proving Triangles Congruent: AAS


The proof of the AAS Congruence Theorem is on the next slide.

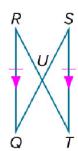
Given: $\angle L \cong \angle Q$

 $\angle M \cong \angle R$ $\overline{MN} \simeq \overline{RS}$

Prove: $\triangle LMN \cong \triangle QRS$

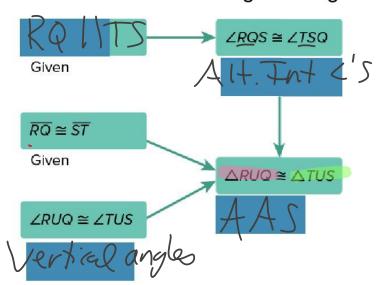
McGraw Hill | Proving Triangles Congruent: ASA, AAS

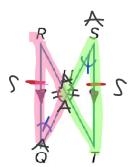
This material may be reproduced for licensed classro only and may not be further reproduced or distr


Example 3

Use AAS to Prove Triangles Congruent

Write a proof.

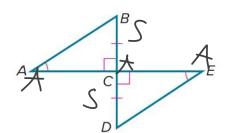

Given: $\overline{RQ}\cong \overline{ST}$ and $\overline{RQ}\parallel \overline{ST}$


Prove: $\triangle RUQ \cong \triangle TUS$

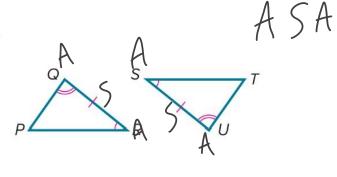
Example 3

Use AAS to Prove Triangles Congruent

McGraw Hill | Proving Triangles Congruent: ASA, AAS


This material may be reproduced for licensed classroonly and may not be further reproduced or distr

Exit Ticket



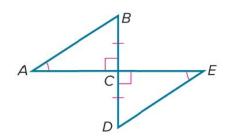
Which congruence criterion would you use to prove the two triangles congruent?

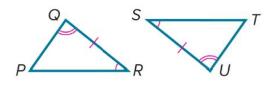
1. AAS

2.

McGraw Hill | Proving Triangles Congruent: ASA, AAS

This material may be reproduced for licensed classro only and may not be further reproduced or distr

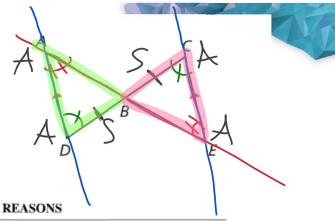

Exit Ticket



Which congruence criterion would you use to prove the two triangles congruent?

1. AAS

2. ASA



McGraw Hill | Proving Triangles Congruent: ASA, AAS

This material may be reproduced for licensed classro only and may not be further reproduced or dist

Write a proof.


Given
$$\overrightarrow{AD} \parallel \overrightarrow{EC}, \overrightarrow{BD} \cong \overrightarrow{BC}$$

Prove $\triangle \overrightarrow{ABD} \cong \triangle \overrightarrow{EBC}$

McGraw Hill | Proving Triangles Congruent: ASA, AAS

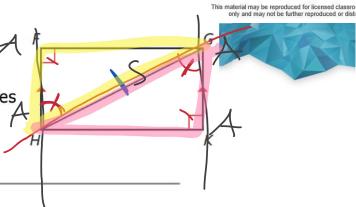
This material may be reproduced for licensed classro-only and may not be further reproduced or distr

2. In the diagram, $\overline{AB} \perp \overline{AD}$, $\overline{DE} \perp \overline{AD}$, and $\overline{AC} \cong \overline{DC}$. Prove

STATEMENTS

- 1. $\overline{AB} \perp \overline{AD}$, $\overline{DE} \perp \overline{AD}$, $\overline{AC} \cong \overline{DC}$
- 2. $\angle BAC$ and $\angle EDC$ are right angles.
- 3. < A = < 0
- 4.C4(B=DEC

REASONS


- 1. Given
- 2 definition of perpendicular
- 3. Right Angles Congruence
- 4. Vertical angles

McGraw Hill | Proving Triangles Congruent: ASA, AAS

Write a proof.

Given $\overline{HF} \parallel \overline{GK}$, $\angle F$ and $\angle K$ are right angles

Prove △HFG = △GKH

STATEMENTS

- 1. HF | GK
- 2.COHF=HGK
- **3.** $\angle F$ and $\angle K$ are right angles.
- 4. CF= LK
- 5. HG=HG
- **6.** $\triangle HFG \cong \angle GKH$

REASONS

- 1. Given
- 2. Alternate Interior Angles Theorem (Theorem 3.2)
- 3. all Right <'S = 4. Right Angles Congruence Theorem
- 5. Reflexive Prop