Saturday, January 21, 2023 8:51 PM

Click Link Below for Interactive Pear Deck Powerpoint

https://app.peardeck.com/student/tzrbkgbup

Lesson 5.3 Proving Triangles Congruent: SSS, SAS Workbook pages 295-298

Content Objective
Students will use SSS and SAS to prove triangles congruent.

Copyright @ McGraw Hill

This material may be reproduced for licensed classr only and may not be further reproduced or dis

Florida's B.E.S.T. Standards for Mathematics

MA.912.GR.1.2 Prove triangle congruence or similarity using Side-Side-Side, Side-Angle-Side, Angle-Side, Angle-Angle-Side, Angle-Angle and Hypotenuse-Leg.

MA.912.GR.1.3 Prove relationships and theorems about triangles. Solve mathematical and real-world problems involving postulates, relationships and theorems of

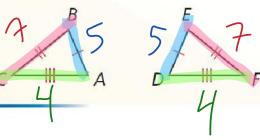
triangles.

MA.912.GR.1.6 Solve mathematical and real-world problems involving congruence or similarity in two-dimensional figures.

McGraw Hill | Proving Triangles Congruent: SSS, SAS

This material may be reproduced for licensed classr only and may not be further reproduced or dis

Learn


Proving Triangles Congruent: SSS

Theorem 5.8 Side-Side-Side (SSS) Congruence Theorem

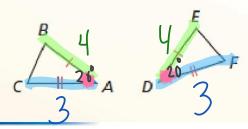
If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent.

If $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EF}$, and $\overline{AC} \cong \overline{DF}$, then $\triangle ABC \cong \triangle DEF$.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Proving Triangles Congruent: SAS



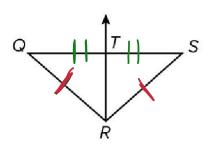
Theorem 5.5 Side-Angle-Side (SAS) Congruence Theorem

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

If
$$\overline{AB} \cong \overline{DE}$$
, $\angle A \cong \angle D$, and $\overline{AC} \cong \overline{DF}$, then $\triangle ABC \cong \triangle DEF$.

Proof p. 246

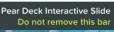
Example 1

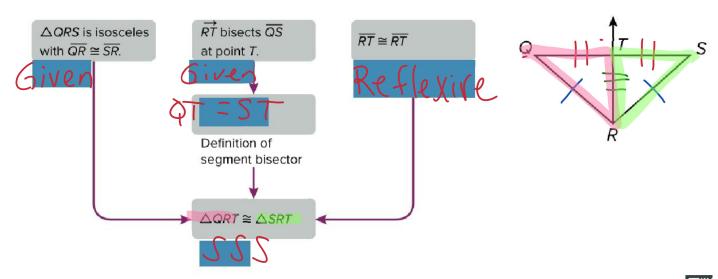

Use SSS to Prove Triangles Congruent

Prove that $\triangle QRT \cong \triangle SRT$.

Given: △QRS is isosceles with

 $\overline{QR} \cong \overline{SR}. \overline{RT}$ bisects \overline{QS} at point T.

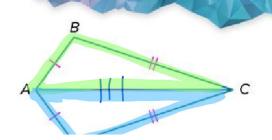

Prove: $\triangle QRT \cong \triangle SRT$


Students, draw anywhere on this slide!

Do not remove this bar

Example 1

Use SSS to Prove Triangles Congruent



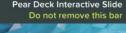
Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Example 1

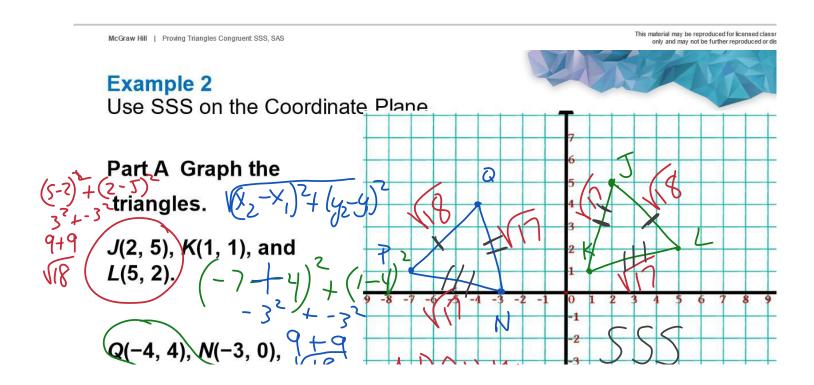
Use SSS to Prove Triangles Congruent

Statements


Reasons

Students, draw anywhere on this slide!

Pear Deck Interactive Slide


Example 2

Use SSS on the Coordinate Plane

Triangle JKL has vertices J(2, 5), K(1, 1), and L(5, 2). Triangle QNP has vertices Q(-4, 4), N(-3, 0), and P(-7, 1). Is $\triangle JKL \cong \triangle QNP$?

Part A Graph the triangles.

Part B Use the distance formula to prove if the triangles are congruent or not.

V 18

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Do not remove this bar

Part B Use the distance formula to prove if the triangles are congruent or not.

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

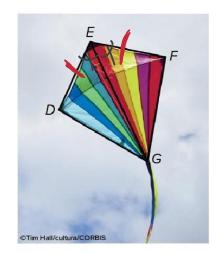
Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Do not remove this bar

Example 3

Use SAS to Prove Triangles Congruent


Check

KITES The kite shown appears to be made up of congruent triangles. If $\overline{DE} \cong \overline{FE}$ and \overline{EG} bisects $\angle DEF$, prove that $\triangle DEG \cong \triangle FEG$.

Complete the two-column proof.

Given: $\overline{DE} \cong \overline{FE}$, \overline{EG} bisects $\angle DEF$.

Prove: $\triangle DEG \cong \triangle FEG$

Students, draw anywhere on this slide!

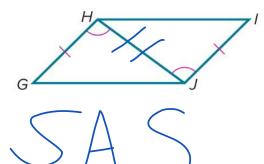
Pear Deck Interactive Slide

Proof:

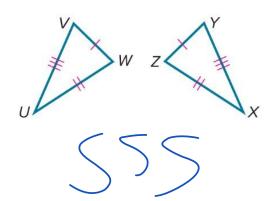
Reasons

2. (Tiven

3. Definition of angle bisector 4. Reflexive


Students, draw anywhere on this slide!

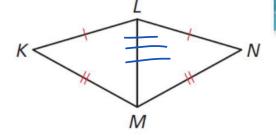
Pear Deck Interactive Slide


Exit Ticket

Which congruence criterion would you use to prove the two triangles congruent?

1.

2.



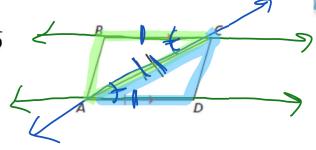
Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Write a proof.

Prove △KLM = △NLM

M-LM REFLEXIV


Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Write a proof.

Given $\overline{BC} \cong \overline{DA}$, $\overline{BC} \parallel \overline{AD}$

Prove △ABC ≅ △CDA

STATEMENTS

REASONS

BC=DA & BC((AD) Givent Angles L(AD=<B(A) AH. Fint. Angles AC=AC Reflexive

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

graphing pr

$$JL = \sqrt{(5-2)^2 + (2-5)^2} \qquad QP = \sqrt{[-7 - (-4)]^2 + (1-4)^2}$$

$$= \sqrt{9+9} \text{ or } 3\sqrt{2} \qquad = \sqrt{9+9} \text{ or } 3\sqrt{2}$$

$$LK = \sqrt{(1-5)^2 + (1-2)^2} \qquad PN = \sqrt{[-3 - (-7)]^2 + (0-1)^2}$$

$$= \sqrt{16+1} \text{ or } \sqrt{17} \qquad = \sqrt{16+1} \text{ or } \sqrt{17}$$

$$KJ = \sqrt{(2-1)^2 + (5-1)^2} \qquad NQ = \sqrt{[-4-(-3)]^2 + (4-0)^2}$$
$$= \sqrt{1+16} \text{ or } \sqrt{17} \qquad = \sqrt{1+16} \text{ or } \sqrt{17}$$

JL = QP, LK = PN, and KJ = NQ. By the definition of congruent segments, all corresponding segments are congruent. Therefore, $\triangle JKL \cong \triangle QNP$ by SSS.