Example 3

Determine Line Relationships When Given Equations

e.
$$x = -2$$
; $x = 4$

Both lines are vertical with undefined slope. Vertical lines are always parallel.

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classr only and may not be further reproduced or dis

Example 3

Determine Line Relationships When Given Equations

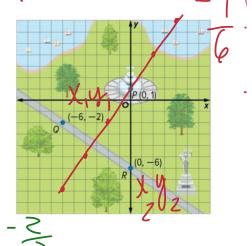
Check

Determine whether each pair of lines is parallel, perpendicular,

or neither, $x = -\frac{1}{3}x + \frac{1}{3}$ or neither, $y = -\frac{1}{3}x + 2$ or $y = -\frac{1}{3}x + 2$ b. $y = -\frac{1}{7}x - \frac{19}{7}$; $y - 1 = \frac{9}{7}(x + 3)$ Same

c. x = -3; x = 4

b.
$$y = \frac{9}{7}x - \frac{19}{7}$$
; $y - 1 = \frac{9}{7}(x_0 + 3)$


c.
$$x = -3$$
; $x = 4$

Example 4

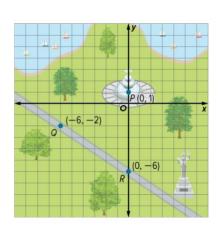
Use Slope to Graph a Line

Slape of QR

DESIGN Valentina is designing a park using grid paper. She wants to build a sidewalk that connects with the fountain at P(0, 1) and is perpendicular to the existing sidewalk that passes through points Q(-6, -2) and R(0, -6). Graph the line that represents the new sidewalk.

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classr only and may not be further reproduced or dis


Example 4

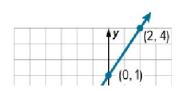
Use Slope to Graph a Line

The slope of the existing sidewalk, \overrightarrow{QR} , is $\frac{-6-(-2)}{0-(-6)}=-\frac{4}{6}$ or $-\frac{2}{3}$.

Because $-\frac{2}{3}\left(\frac{3}{2}\right) = -1$, the slope of the line perpendicular to \overrightarrow{QR} through P is $\frac{3}{2}$.

Graph the line that represents the new sidewalk.

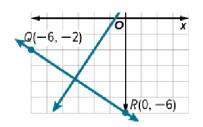
McGraw Hill | Slope and Equations of Lines


This material may be reproduced for licensed classr only and may not be further reproduced or dis

Example 4

Use Slope to Graph a Line

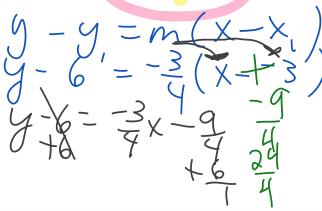
Step 1 Use the slope.


Use the slope of the line perpendicular to \overrightarrow{QR} to find another point on the line that passes through

point P(0, 1). From P(0, 1), move up 3 units and then right 2 units. Plot a point at this location.

Graph the line connecting these two points.

The new sidewalk will pass through P(0, 1) and the new point that you plotted.



McGraw Hill | Slope and Equations of Lines

Example 5

Write Equations of Parallel and Perpendicular Lines

Write an equation in slope-intercept form for the line parallel to $y = -\frac{3}{4}x + 3$ containing (-3, 6)

McGraw Hill | Slope and Equations

This material may be reproduced only and may not be further

Example 5

Write Equations of Parallel and Perpendicular Lines

The slope of $y = -\frac{3}{4}x + 3$ is $-\frac{3}{4}$, so the slope of a line parallel to it is $-\frac{3}{4}$.

$$y = mx + b$$

$$6 = -\frac{3}{4}(-3) + b$$

$$6 = \frac{9}{4} + b$$

$$\frac{15}{4} = b$$

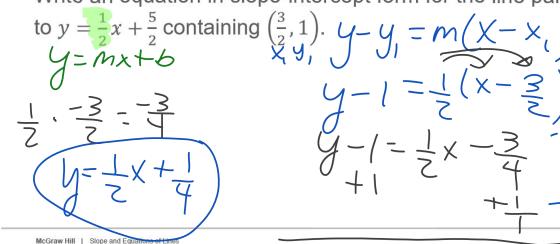
Slope-intercept form

$$6 = -\frac{3}{4}(-3) + b$$
 $m = -\frac{3}{4}$ and $(x, y) = (-3, 6)$

Simplify.

Subtract $\frac{9}{4}$ from each side.

McGraw Hill | Slope and Equations of Lines


This material may be reproduced for licensed classiful only and may not be further reproduced or dis

Example 5

Write Equations of Parallel and Perpendicular Lines

Check

Write an equation in slope-intercept form for the line paralle

$$y - 1 = \frac{1}{2}(x - 3)$$

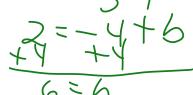
$$y - 1 = \frac{1}{2}x - \frac{3}{4}$$
This paterial may be reproduced for lice only and may not be unfiner reproduced for lice only and may not be unfiner reproduced.

Example 5

Write Equations of Parallel and Perpendicular Lines

Check

Write an equation in slope-intercept form for the line parallel to $y = \frac{1}{2}x + \frac{5}{2}$ containing $(\frac{3}{2}, 1)$.


$$y = \frac{1}{2}x + \frac{1}{4}$$

write the equation of the line parallel to the given line and containing the given point.

1. y = 3x + 2, (1, 2) y = 3x - 12. 1x + 2y = 6, (4, 3) 2y = -1x + 6 3x - 1Write the equation of the line perpendicular to the given line and containing the given point.

3. -3x + 4y = 16, (3, 2) y = Mx + My = 2x + 16 y = 3x + 16 y =

Write the equation of the line parallel to the given line and containing the given point.

1.
$$y = 3x + 2$$
, (1, 2) $y = 3x - 1$

2.
$$x + 2y = 6$$
, (4, 3) $y = -\frac{1}{2}x + 5$

Write the equation of the line perpendicular to the given line and containing the given point.

3.
$$-3x + 4y = 16$$
, (3, 2) $y = -\frac{4}{3}x + 6$

4.
$$4x - y = 9$$
, $(8, -6)$ $y = -\frac{1}{4}x - 4$