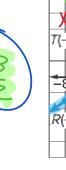
This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 2

Determine Line Relationships When Given Graphs

Determine whether each pair of lines is parallel, perpendicular, or neither.


a. \overrightarrow{RS} and \overrightarrow{TU}

b. \overrightarrow{EF} and \overrightarrow{DG}

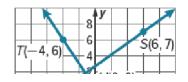
DG 6 = 3

perpendiular

McGraw Hill | Slope and Equations of Lines

7(-4, 6) -8-6 4-20 2406 8 x R(-8, -3)_-6

0-6

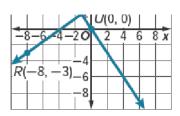

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed

Example 2

Determine Line Relationships When Given Graphs

a. \overrightarrow{RS} and \overrightarrow{TU}

Step 1 Find the slope of each line.



 $y_2 - y_1$

slope =
$$\frac{x_2-x_1}{x_2-x_1}$$
, where $x_1 \neq x_2$

slope of
$$\overrightarrow{RS} = \frac{7 - (-3)}{6 - (-8)} = \frac{10}{14}$$
 or $\frac{5}{7}$

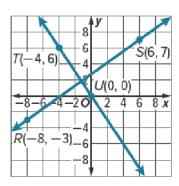
slope of
$$\overrightarrow{TU} = \frac{0-6}{0-(-4)} = -\frac{6}{4}$$
 or $-\frac{3}{2}$

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed

Example 2

Determine Line Relationships When Given Graphs


b. \overrightarrow{EF} and \overrightarrow{DG}

Step 1 Find the slope of each line.

slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
, where $x_1 \neq x_2$

slope of
$$\overrightarrow{EF} = \frac{-1-6}{6-3} = -\frac{7}{3}$$

slope of
$$\overrightarrow{DG} = \frac{5 - (-1)}{12 - (-2)} = \frac{6}{14}$$
 or $\frac{3}{7}$

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed

Example 2

Determine Line Relationships When Given Graphs

Check

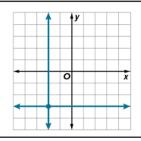
Determine whether the pair of lines is parallel, perpendicular, or neither.

vertical line X = X-int Slope undefined 5

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed

Learn

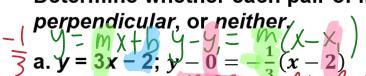

Equations of Lines

The equations of horizontal and vertical lines involve only one variable.

Key Concept: Horizontal and Vertical Line Equations

The equation of a horizontal line is y = b, where b is the y-intercept of the line.

The equation of a vertical line is x = a, where a is the x-intercept of the line.

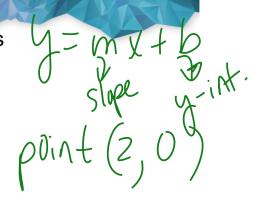


When given the equations of two lines, you can compare the equations to determine the relationship between the lines.

Example 3

Determine Line Relationships When Given Equations

Determine whether each pair of lines is parallel,



b.
$$y = 3$$
; $x = 1$ Depending

c.
$$y - 5 = -\frac{3}{4}(x + 2)$$
; $y = -\frac{3}{4}x + 2$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y - 1 = \frac{1}{2}(x + 2)$ for all $y = 2x + 3$; $y = 2x$

d.
$$y = 2x + 3$$
; $y - 1 = \frac{1}{2}(x + 2)$

e.
$$x = -2$$
; $x = 4$

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classroom use

Example 3

Determine Line Relationships When Given Equations

a.
$$y = 3x - 2$$
; $y - 0 = -\frac{1}{3}(x - 2)$

slope-intercept form

point-slope form

$$y = 3x - 2$$
 $y - 0 = -\frac{1}{3}(x - 2)$