Lesson 3.8 Slope and Equations of Lines

Tuesday, November 29, 2022 5:08 PM

Lesson 3.8 Slope and Equations of Lines Workbook pages 191-196

Copyright @ McGraw Hill

This material may be reproduced for licensed classr only and may not be further reproduced or dis

Florida's B.E.S.T. Standards for Mathematics

MA.912.GR.3.3

Use coordinate geometry to solve mathematical and real-world geometric problems involving lines, circles, triangles and quadrilaterals.

Content Objective

Students classify lines as parallel, perpendicular, or neither by using the slope criteria.

Learn

Slope Criteria for Parallel and Perpendicular Lines

Slope is the ratio of the change in the y-coordinate (rise) to the corresponding change in the x-coordinate (run) as you move from one point to another along a line. The slope criteria outlines a method for proving the relationship between lines based on a comparison of the slopes of the lines. You can use the slopes of two lines to determine whether the lines are parallel, perpendicular, or neither.

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classi only and may not be further reproduced or dis

ru

Learn

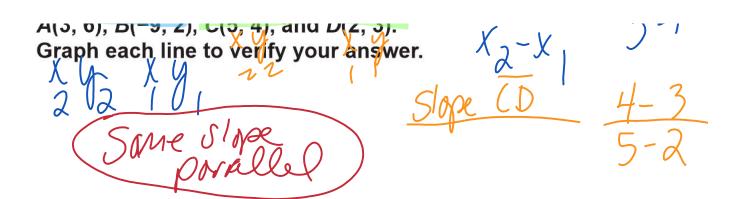
Slope Criteria for Parallel and Perpendicular Lines

Postulate 3.13: Slope Criteria for Parallel and **Perpendicular Lines**

Slopes of Parallel Lines

Two distinct nonvertical lines have the same slope if and only if they are parallel. All vertical lines are parallel.

Slopes of Perpendicular Lines


Two nonvertical lines are perpendicular if and only if the product of their slopes is -1. Vertical and horizontal lines are perpendicular. negative Reciprocals

McGraw Hill | Slope and Equations of Line

Example 1

Determine Line Relationships When Given Points

Determine whether \overrightarrow{AB} and \overrightarrow{CD} are parallel, perpendicular, or neither for

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classr only and may not be further reproduced or dis

Example 1

Determine Line Relationships When Given Points

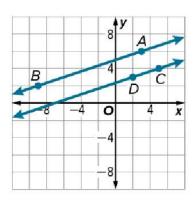
Step 1 Find the slope of each line.

slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
, where $x_1 \neq x_2$

slope of
$$\overrightarrow{AB} = \frac{6-2}{3-(-9)} = \frac{4}{12}$$
 or $\frac{1}{3}$

slope of
$$\overrightarrow{CD} = \frac{4-3}{5-2}$$
 or $\frac{1}{3}$

McGraw Hill | Slope and Equations of Lines


This material may be reproduced for licensed classr only and may not be further reproduced or dis

Example 1

Determine Line Relationships When Given Points

Step 2 Determine the relationship.

The two lines have the same slope, so they are parallel.

Example 1

Determine Line Relationships When Given Points

Check

Determine whether \overrightarrow{AB} and \overrightarrow{CD} are parallel perpendicular, or maither for A(14, 13), B(-11, 0), C(-3, 7), and D(-4, -5). Graph each line to verify your answer.

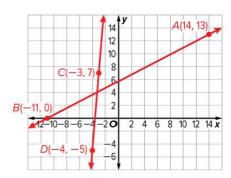
 $\begin{array}{c}
\sqrt{2} & 31 \\
\sqrt{2} - x_1 \\
0 - 13 - \frac{13}{-25} \\
-11 - 14 - 25
\end{array}$

-5-7 -4+3

-12

12 slupe

McGraw Hill | Slope and Equations of Lines

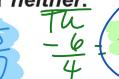

This material may be reproduced for licensed classionly and may not be further reproduced or dis

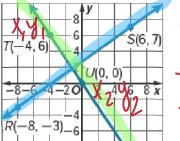
Example 1

Determine Line Relationships When Given Points

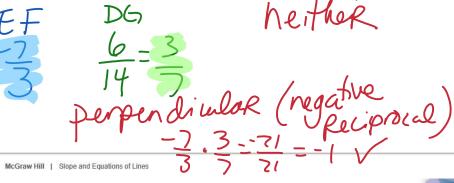
Check

Determine whether \overrightarrow{AB} and \overrightarrow{CD} are parallel, perpendicular, or neither for A(14, 13), B(-11, 0), C(-3, 7), and D(-4, -5). Graph each line to verify your answer. neither




Determine whether each pair of lines

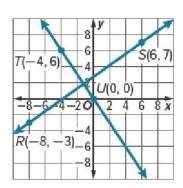
is parallel, perpendicular, or neither.



b.
$$\overrightarrow{EF}$$
 and \overrightarrow{DG}

Example 2

Determine Line Relationships When Given Graphs


a. \overrightarrow{RS} and \overrightarrow{TU}

Step 1 Find the slope of each line.

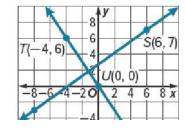
slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
, where $x_1 \neq x_2$

slope of
$$\overrightarrow{RS} = \frac{7 - (-3)}{6 - (-8)} = \frac{10}{14}$$
 or $\frac{5}{7}$

slope of
$$\overrightarrow{TU} = \frac{0-6}{0-(-4)} = -\frac{6}{4}$$
 or $-\frac{3}{2}$

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed class only and may not be further reproduced or di


Example 2

Determine Line Relationships When Given Graphs

b. \overrightarrow{EF} and \overrightarrow{DG}

Step 1 Find the slope of each line.

slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
, where $x_1 \neq x_2$

slope of
$$\overrightarrow{EF} = \frac{-1-6}{6-3} = -\frac{7}{3}$$

slope of $\overrightarrow{DG} = \frac{5-(-1)}{12-(-2)} = \frac{6}{14}$ or $\frac{3}{7}$

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classi only and may not be further reproduced or dis

Example 2

Determine Line Relationships When Given Graphs

Check

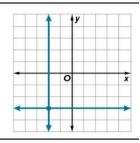
Determine whether the pair of lines is parallel, perpendicular, or neither.

vertical line X = X-int Slope undefined 5 $y = \frac{1}{x}$ $y = \frac{1}{x}$

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classi only and may not be further reproduced or dis

Learn


Equations of Lines

The equations of horizontal and vertical lines involve only one variable.

Key Concept: Horizontal and Vertical Line Equations

The equation of a horizontal line is y = b, where b is the y-intercept of the line.

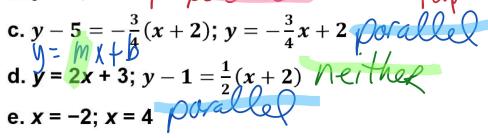
The equation of a vertical line is x = a, where a is the x-intercept of the line.

When given the equations of two lines, you can compare the equations determine the relationship between the lines.

Example 3

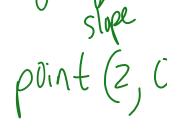
Determine Line Relationships When Given Equations

Determine whether each pair of lines is parallel,



perpendicular, or neither,

a.
$$y = 3x - 2$$
; $y - 0 = -\frac{1}{3}(x - 2)$


b. $y = 3$; $x = 1$ Perpendicular

b.
$$y = 3$$
; $x = 1$ Deperdule

d.
$$y = 2x + 3$$
; $y - 1 = \frac{1}{2}(x + 2)$ Net well

e.
$$x = -2$$
; $x = 4$

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classi only and may not be further reproduced or dis

Example 3

Determine Line Relationships When Given Equations

a.
$$y = 3x - 2$$
; $y - 0 = -\frac{1}{3}(x - 2)$

slope-intercept form

point-slope form

$$y = 3x - 2$$
 $y - 0 = -\frac{1}{3}(x - 2)$

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classi only and may not be further reproduced or dis

Example 3

Determine Line Relationships When Given Equations

b.
$$y = 3$$
; $x = 1$

The line y = 3 is a horizontal line. The line x = 1 is a vertical line. Vertical and horizontal lines are always perpendicular.

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classi only and may not be further reproduced or dis

Example 3

Determine Line Relationships When Given Equations

c.
$$y - 5 = -\frac{3}{4}(x+2)$$
; $y = -\frac{3}{4}x + 2$

point-slope form slope-intercept form
$$y-5=-\frac{3}{4}(x+2)$$
 $y=-\frac{3}{4}x+2$

The equation $y-5=-\frac{3}{4}(x+2)$ written in slope-intercept form is $y=-\frac{3}{4}+\frac{7}{2}$. Because the slopes of both lines are $-\frac{3}{4}$ and the *y*-intercepts are different, the lines are parallel.

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed class only and may not be further reproduced or di

Example 3

Determine Line Relationships When Given Equations

d.
$$y = 2x + 3$$
; $y - 1 = \frac{1}{2}(x + 2)$

Example 3

Determine Line Relationships When Given Equations

e.
$$x = -2$$
; $x = 4$

Both lines are vertical with undefined slope. Vertical lines are always parallel.

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classr only and may not be further reproduced or dis

Example 3

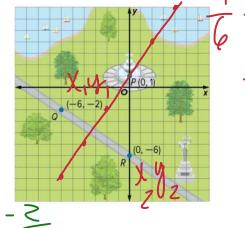
Determine Line Relationships When Given Equations

Check

Determine whether each pair of lines is parallel, perpendicular,

Determine whether each pair of lines is parallel, perpendicular, or neither,
$$y = \frac{1}{3}x + \frac{1}{3}$$
 or $y = \frac{1}{3}x + \frac{1}{3}$ or $y = \frac{1}{3}x + \frac{1}{3}x + \frac{1}{3}$ or $y = \frac{1}{3}x + \frac{1}{3}x$

c.
$$x = -3$$
; $x = 4$

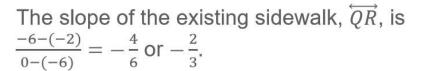

LAAIIIPIC 4

Use Slope to Graph a Line

Slape of OR

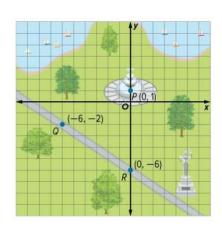
ag a park
to build a 3
the new 3

DESIGN Valentina is designing a park using grid paper. She wants to build a sidewalk that connects with the fountain at P(0, 1) and is perpendicular to the existing sidewalk that passes through points Q(-6, -2) and R(0, -6). Graph the line that represents the new sidewalk.



McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed classi only and may not be further reproduced or dis

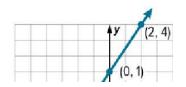

Example 4

Use Slope to Graph a Line

Because $-\frac{2}{3}\left(\frac{3}{2}\right) = -1$, the slope of the line perpendicular to \overrightarrow{QR} through P is $\frac{3}{2}$.

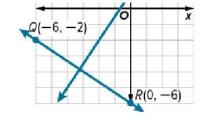
Graph the line that represents the new sidewalk.

McGraw Hill | Slope and Equations of Lines


This material may be reproduced for licensed class only and may not be further reproduced or di

Example 4

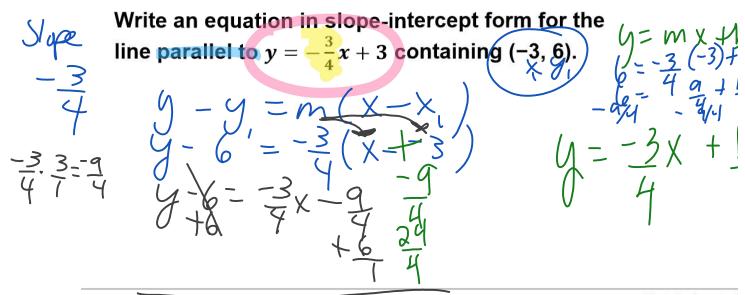
Use Slope to Graph a Line


Step 1 Use the slope.

Use the slope of the line perpendicular to \overrightarrow{QR} to find another point on the line that passes through

point P(0, 1). From P(0, 1), move up 3 units and then right 2 units. Plot a point at this location.

Step 2 Graph the line connecting these two points.


The new sidewalk will pass through P(0, 1) and the new point that you plotted.

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed class only and may not be further reproduced or d

Example 5

Write Equations of Parallel and Perpendicular Lines

medium iiii | Giope and Equations of

This material may be reproduce only and may not be furth

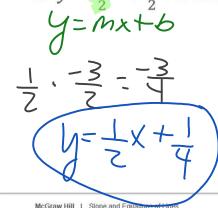
Example 5

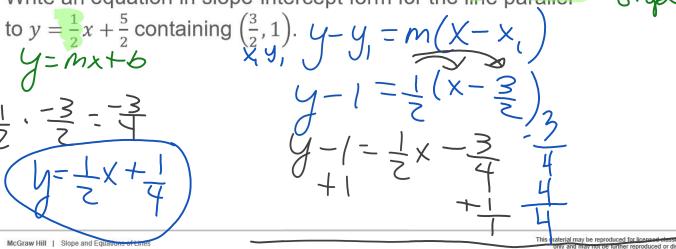
Write Equations of Parallel and Perpendicular Lines

The slope of $y = -\frac{3}{4}x + 3$ is $-\frac{3}{4}$, so the slope of a line parallel to it is $-\frac{3}{4}$.

$$y = mx + b$$
 Slope-intercept form $6 = -\frac{3}{4}(-3) + b$ $m = -\frac{3}{4}$ and $(x, y) = (-3, 6)$ $6 = \frac{9}{4} + b$ Simplify. $\frac{15}{4} = b$ Subtract $\frac{9}{4}$ from each side.

McGraw Hill | Slope and Equations of Lines


This material may be reproduced for licensed classi only and may not be further reproduced or dis


Example 5

Write Equations of Parallel and Perpendicular Lines

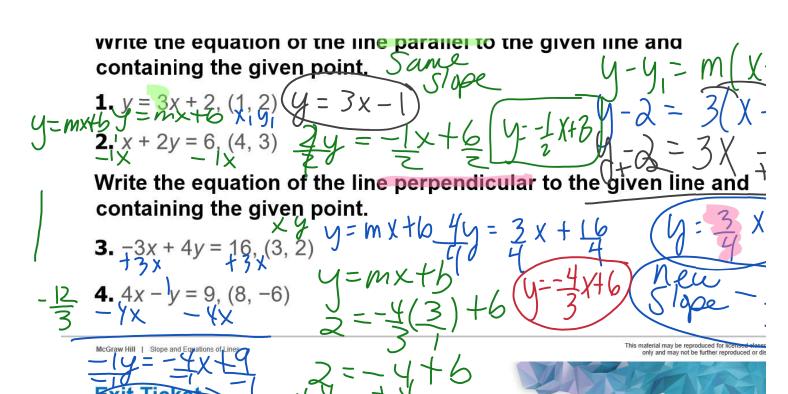
Check

Write an equation in slope-intercept form for the line parallel

Example 5

Write Equations of Parallel and Perpendicular Lines

Check


Write an equation in slope-intercept form for the line parallel to $y = \frac{1}{2}x + \frac{5}{2}$ containing $(\frac{3}{2}, 1)$.

$$y = \frac{1}{2}x + \frac{1}{4}$$

McGraw Hill | Slope and Equations of Lines

This material may be reproduced for licensed class only and may not be further reproduced or d

Write the equation of the line parallel to the given line and containing the given point.

1.
$$y = 3x + 2$$
, (1, 2) $y = 3x - 1$

2.
$$x + 2y = 6$$
, (4, 3) $y = -\frac{1}{2}x + 5$

Write the equation of the line perpendicular to the given line and containing the given point.

3.
$$-3x + 4y = 16$$
, (3, 2) $y = -\frac{4}{3}x + 6$

4.
$$4x - y = 9$$
, $(8, -6)$ $y = -\frac{1}{4}x - 4$