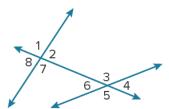
Example 2

Classify Angle Pair Relationships

Check

Classify the relationship between each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.

- a. ∠1 and ∠5 alternate exterior angles
- **b.** ∠2 and ∠4 corresponding angles



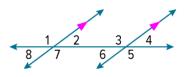
McGraw Hill | Parallel Lines and Transversals

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Learn

Angles and Parallel Lines

If two lines are parallel and cut by a transversal, then there are special relationships in the angle pairs formed by the lines.



Theorem 3.14: Corresponding Angles Theorem

If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.

$$\angle 1 \cong \angle 3$$
,

$$\angle 2 \cong \angle 4$$
.

$$\angle 5 \cong \angle 7$$
.

- 1

Learn

Angles and Parallel Lines

Theorem 3.15: Alternate Interior Angles Theorem

If two parallel lines are cut by a transversal, then each $\angle 2 \cong \angle 6$, pair of alternate interior angles is congruent. $\angle 3 \cong \angle 7$

Theorem 3.16: Consecutive Interior Angles Theorem

If two parallel lines are cut by a transversal, then each $\angle 2$ and $\angle 3$, pair of consecutive interior angles is supplementary. $\angle 6$ and $\angle 7$

McGraw Hill | Parallel Lines and Transversals

This material may be reproduced for licensed classroom use

Learn

Angles and Parallel Lines

Theorem 3.17: Alternate Exterior Angles Theorem

If two parallel lines are cut by a transversal, then $\angle 1 \cong \angle 5$, each pair of alternate exterior angles is congruent. $\angle 4 \cong \angle 8$

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Learn

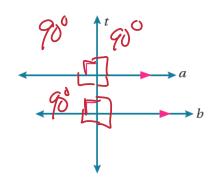
Angles and Parallel Lines

A special relationship also exists when the transversal of two parallel lines is a perpendicular line.

Theorem 3.18: Perpendicular Transversal Theorem

In a plane, if a line is perpendicular to one of two parallel lines, then it is perpendicular to the other.

Example If $a \parallel b$ and $a \perp t$, then $b \perp t$.



McGraw Hill | Parallel Lines and Transversals

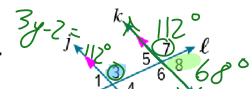
This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Example 5

Find Values of Variables

Use the figure to find the value of the indicated variable. Justify your reasoning.

a. If $m \ge 3 = (4x + 7)^\circ$ and $m \ge 6 = (5x - 13)^\circ$.

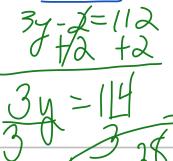


find the value of x.

b. Find the value of y if $m \ge 8 = 68^{\circ}$ and

$$m \angle 3 = (3y - 2)^{\circ}$$
.

() ($y \in S$) or $y \in Y$



Alternate
Interior

YX +7 = SX-13

YX = SX-20

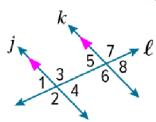
This material righty be ploroduced for licensed classroom use only any may not be further reproduced or distributed.

McGraw Hill | Parallel Lines and Transversals

Example 5

Find Values of Variables

a. If $m \angle 3 = (4x + 7)^\circ$ and $m \angle 6 = (5x - 13)^\circ$, find the value of x.



$$\angle 3 \cong \angle 6$$

Alternate Interior Angles Theorem

$$m \angle 3 = m \angle 6$$

Definition of congruent angles

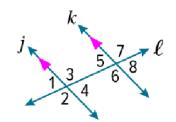
$$(4x + 7)^{\circ} = (5x - 13)^{\circ}$$

Substitution

$$x = 20$$

Solve.

b. Find the value of y if $m \angle 8 = 68^{\circ}$ and $m \angle 3 = (3y - 2)^{\circ}$.



$$\angle 5 \cong \angle 8$$
 Vertice

 $\angle 5 \cong \angle 8$ Vertical Angles Theorem

$$m \angle 5 = m \angle 8$$

 $m \angle 5 = m \angle 8$ Definition of congruent angles

$$m \angle 5 = 68^{\circ}$$

 $m \angle 5 = 68^{\circ}$ Substitution

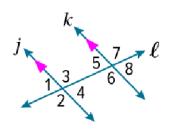
McGraw Hill | Parallel Lines and Transversals

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed

Example 5

Find Values of Variables

Because lines j and k are parallel, $\angle 5$ and ∠3 are supplementary by the Consecutive Interior Angles Theorem.



$$m \angle 3 + m \angle 5 = 180^{\circ}$$

Definition of supplementary angles

$$(3y - 2)^{\circ} + 68^{\circ} = 180^{\circ}$$

Substitution

$$3y^{\circ} + 66^{\circ} = 180^{\circ}$$

Simplify.

$$y = 38$$

Solve.