Lesson 3.5 & 3.6 Proving Segment and Angle Relationships

Tuesday, November 8, 2022 10:10 AM

Click Link Below for Interactive Pear Deck Powerpoint

https://app.peardeck.com/student/traonlruf

Lesson 3.5 and 3.6: Proving Segment and Angle Relationships

Workbook pages 163-176

Copyright @ McGraw Hill

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Florida's B.E.S.T. Standards for Mathematics

MA.912.GR.1.1

Prove relationships and theorems about lines and angles. Solve mathematical and real-world problems involving postulates, relationships and theorems of lines and angles.

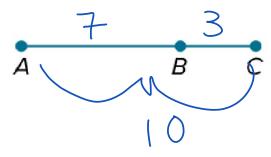
Content Objective

Students prove theorems about line segments. Students prove theorems about angles.

McGraw Hill | Proving Segment Relationships

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Learn


Segment Addition

Postulate 3.8: Ruler Postulate				
Words	The points on any line or line segment can be put into one-to-one correspondence with real numbers.			
Example	Given any two points <i>A</i> and <i>B</i> on a line, if <i>A</i> corresponds to zero, then <i>B</i> corresponds to a positive real number. A B			

Learn

Segment Addition

In this figure, point B is said to be between points A and C. You can also say that AB + BC = AC by the Segment Addition Postulate.

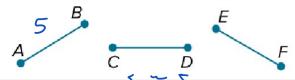
Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Learn

Segment Addition

Segment Addition Postulate					
Words	If A , B , and C are collinear, then point B is between A and C if and only if $AB + BC = AC$.				
Example	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				



Segment Addition

Properties of Segment Congruence

Reflexive Property of

Congruence (Reflection + Same

Symmetric Property of

Congruence (line of Symmetry

If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.

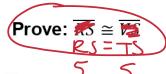
Transitive Property of

Congruence (Syllegism

If $\overline{AB} \cong \overline{CD}$, and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$

Pear Deck Interactive Slide Do not remove this bar

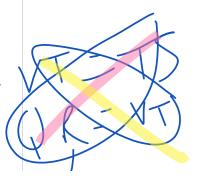
Students, draw anywhere on this slide!

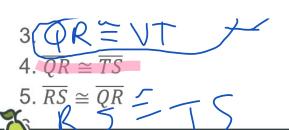

Example 2

Prove Segment Congruence

Write a two-column proof.

Given: R is the midpoint of \overline{QS} . T is the consinent


midpoint of VS.



Reasons

Statements

1. R is the midpoint of \overline{QS} . T is the midpoint of \overline{VS} .

3. Given 4. Property of Congruence

5. Symmetric Property of Congruence

. Property of Congruer

Pear Deck Interactive Slide Do not remove this bar

Students, draw anywhere on this slide!

Example 2

Prove Segment Congruence

Proof:

Statements

- 1. R is the midpoint of \overline{QS} . T is the midpoint of \overline{VS} .
- $2.\overline{QR} \cong \overline{RS}, \overline{VT} \cong \overline{TS}$
- 3. $QR \cong VT$
- $4. QR \cong \overline{TS}$
- 5. $\overline{RS} \cong \overline{QR}$
- 6. $\overline{RS} \cong \overline{TS}$

Reasons

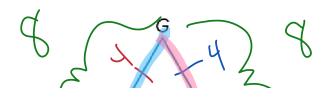
- 2. Midpoint Theorem
- 3. Given

1. Given

- 4. Transitive Property of Congruence
- 5. Symmetric Property of Congruence
- 6. Transitive Property of Congruence

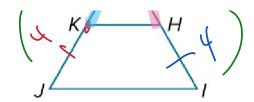
McGraw Hill | Proving Segment Relationships

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.


Example 2

Prove Segment Congruence

Check

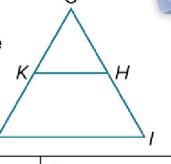

Complete the two-column proof.

Given: $\overline{GI} \simeq \overline{GI}$

K is the midpoint of \overline{GJ} . *H* is the midpoint of \overline{GI} .

Prove: $GK \cong \overline{GH}$

Students, draw anywhere on this slide!


Pear Deck Interactive Slide Do not remove this bar

Example 2

Prove Segment Congruence

Proof:

Statements

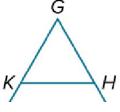
- 1. K is the midpoint of \overline{GJ} . *H* is the midpoint of \overline{GI} .
- 2. $\overline{GK} \cong \overline{KJ}$; $\overline{GH} \cong \overline{HI}$
 - 3. GK = KJ; GH = HI
 - $4. \overline{GJ} \cong \overline{GI}$
 - 5. GJ = GI
 - 6. GJ = GK + KJ; GI = GH + HI

- 2. Definition of Midpoint

 3. Definition of Congruency

 4. Given.

 5. Definition of Congruency



Students, draw anywhere on this slide!

Example 2

Prove Segment Congruence

Proof:

Statements

7.
$$GK + KJ \neq GH + HI$$

8.
$$GK + GK = GH + GH$$

$$9.2GK = 2GH$$

10.
$$GK = GH$$

11.
$$\overline{GK} \cong \overline{GH}$$

Reasons

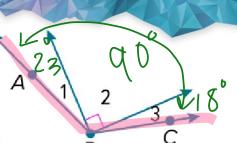
7. Jubstitution

9 Combine like terms

10. DIVISION Prop

11. Def. of (wynnery

Students, draw anywhere on this slide!


Pear Deck Interactive Slide
Do not remove this bar

Example 1

Angle Addition Postulate

What is $m \angle 3$ if $m \angle 1 = 23^\circ$, $m \angle ABC = 131^\circ$?

STATEMENTS

$$m \angle 1 + m \angle 2 + m \angle 3 = m \angle ABC$$

$$23^{\circ} + 90^{\circ} + m \angle 3 = 131^{\circ}$$

$$113^{\circ} + m \angle 3 = 131^{\circ}$$

$$113^{\circ} + m \angle 3 - 113^{\circ} = 131^{\circ} - 113^{\circ}$$

REASONS

Property of Equality

Substitution Property of Equality

<u>>UDTQ(A</u>Property of Equality

Substitution Property of Equality

Pear Deck Interactive Slide
Do not remove this bar

Example 1

Angle Addition Postulate

STATEMENTS

$$m \angle 1 + m \angle 2 + m \angle 3 = m \angle ABC$$

 $23^{\circ} + 90^{\circ} + m \angle 3 = 131^{\circ}$
 $113^{\circ} + m \angle 3 = 131^{\circ}$
 $113^{\circ} + m \angle 3 - 113^{\circ} = 131^{\circ} - 113^{\circ}$
 $m \angle 3 = 18^{\circ}$

REASONS

Angle Addition Postulate

Substitution Property of Equality

Substitution Property of Equality

Subtraction Property of Equality

Substitution Property of Equality

McGraw Hill | Proving Segment Relationships

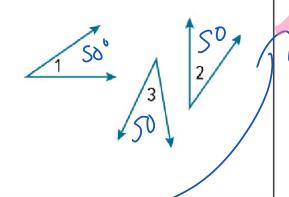
This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Learn

Congruent Angles

Theorem 3.5: Properties of Angle Congruence

Reflexive Property of Congruence

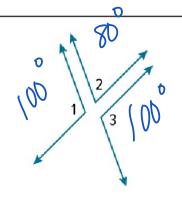

Symmetric Property of Congruence

If
$$\angle 1 \cong \angle 2$$
, then $\angle 2 \cong \angle 1$.

Transitive Property of Congruence

If
$$\angle 1 \cong \angle 2$$
 and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$

law of Syllogism


Congruent Angles

Theorems

Theorem 3.6: Congruent Supplements Theorem

Angles supplementary to the same angle or to congruent angles are congruent.

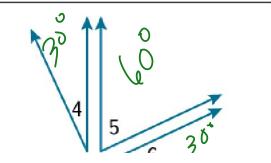
Abbreviation \angle s suppl. to same \angle or $\cong \angle$ s are \cong .

If $m \angle 1 + m \angle 2 = 180^{\circ}$ and $m \angle 2 + m \angle 3 = 180^{\circ}$, then $\angle 1 \cong \angle 3$.

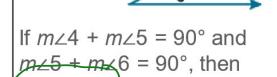
Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Learn


Congruent Angles

Theorems


Theorem 3.7: Congruent Complements Theorem

900

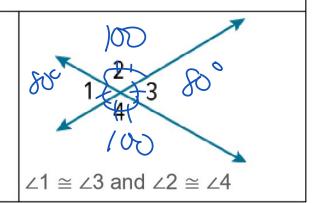
Angles complementary to the same angle or to congruent angles are congruent.

Abbreviation \angle s compl. to same \angle or $\cong \angle$ s are \cong .

 $\angle 4 \cong \angle 6$.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar


Learn

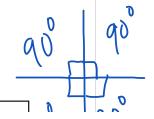
Congruent Angles

Theorems

Theorem 3.8: Vertical Angles Theorem

If two angles are vertical angles, then they are congruent.

Students, draw anywhere on this slide!


Pear Deck Interactive Slide Do not remove this bar

Learn

Right Angle Theorems

You can prove the following theorems about right angles using what you already know about angle measures.

Theorem 3.9	Perpendicular lines intersect to form four right angles.	όρ	190
Theorem 3.10	All right angles are congruent.		
Theorem 3.11	Perpendicular lines form congruent adjacent angles.)	

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Learn

Right Angle Theorems

	If two angles are congruent and supplementary, then each angle is a right angle.
Theorem 3.13	If two congruent angles form a linear pair, then they are right angles.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Example 5Right Angle Theorems in Proofs Write a proof.

Given: $\angle 1 \cong \angle 4$

Prove: $\angle 1$ and $\angle 2$ are right angles.

Statements

$1. < 1 \le < 4$

$$2. \angle 2 \cong \angle 4$$
 $4 = \angle 2$

3.
$$\angle 4 \cong \angle 2$$

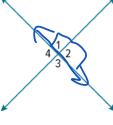
4. $\angle 1 \cong \angle 2$

6. ∠1 and ∠2 are ____ angles.

Reasons

- 1. (Tiven
- 2. Ventral Ango Theorem
- 3. Symmetric Property of Congruence
- 4. Transitive Property of Congruence
- 5. Definition of linear pair
- 6. If two congruent angles form a linear pair, then they are right

Students, draw anywhere on this slide!


Example 5

Right Angle Theorems in Proofs

Proof:

Statements

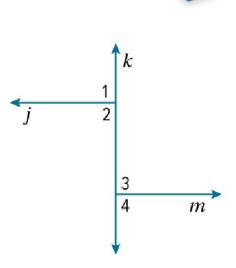
- 1. <mark>∠1 ≅ ∠4</mark>
- $2. \angle 2 \cong \angle 4$
- $3. \angle 4 \cong \angle 2$
- 4. \(\pi\)1 \(\preceq\) \(\preceq\)2
- 5. ∠1 and ∠2 are a linear pair.
- 6. ∠1 and ∠2 are right angles.

Reasons

- 1. Given
- 2. Vertical Angles Theorem
- 3. Symmetric Property of Congruence
- 4. Transitive Property of Congruence
- 5. Definition of linear pair
- 6. If two congruent angles form a linear pair, then they are right angles.

Example 5

Right Angle Theorems in Proofs


Check

Complete the proof.

Given: Lines j and k are perpendicular.

 $\angle 1 \cong \angle 4$

Prove: $\angle 2 \cong \angle 4$

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Example 5

Right Angle Theorems in Proofs

Proof:

Statements

- 1. Lines j and k are perpendicular.
- 2. ∠2 ≅ ∠1
- $4.12 \approx 14$

Reasons

1. Given

m

4. Transitive Property of

m'

Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar

Example 5

Right Angle Theorems in Proofs

Proof:

Statements

- 1. Lines j and k are perpendicular.
- 2. ∠2 ≅ ∠1
- $3. \angle 1 \cong \angle 4$
- 4. ∠2 ≅ ∠4

↓ 1. Given

2. Perpendicular lines form congruent adjacent angles.

Reasons

- 3. Given
- 4. Transitive Property of Congruence

McGraw Hill | Proving Segment Relationships

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.