Wednesday, October 19, 2022 8:55 PM

Click Link Below for Interactive Pear Deck Powerpoint

https://app.peardeck.com/student/tkyxgexdn

Statements, Conditionals, and Biconditionals

Copyright @ McGraw Hill

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed.

Florida's B.E.S.T. Standards for Mathematics

MA.912.LT.4.3

Identify and accurately interpret "if...then," "if and only if," "all" and "not" statements. Find the converse, inverse and contrapositive of a statement.

MA.912.LT.4.10

Judge the validity of arguments and give counterexamples to disprove statements.

Content Objective

Students write and analyze compound statements by using logic.

terial may be reproduced for licensed classroomuse nly and may not be further reproduced or distributed.

Learn

Using Logic

A **statement** is any sentence that is either true T or false F, but not both. **Truth value** is the truth or falsity of a statement. Statements are often represented using a letter such as *p* or *q*.

If a statement is represented by p, then $not\ p$ or $\sim p$ is the **negation** of the statement. The negation of a statement has the opposite meaning, as well as the opposite truth value, of the original statement.

McGraw Hill | Statements, Conditionals, and Biconditionals

This material may be reproduced for licensed classroomus only and may not be further reproduced or distribute

Learn

Using Logic

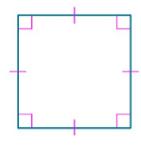
Two or more statements joined by the word *and* or *or* form a **compound statement**. A compound statement using the word *and* is called a **conjunction**. A conjunction is true only when both statements that form it are true. A conjunction is written as p and q or $p \land q$.

A compound statement using the word or is called a **disjunction**. A disjunction is true if at least one of the statements is true. A disjunction is written as p or q or $p \lor q$.

McGraw Hill | Statements, Conditionals, and Biconditionals

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Example 1


Truth Values of Conjunctions

Use the statements to write each conjunction. Then find the truth values. Explain your reasoning.

p: The figure is a pentagon.

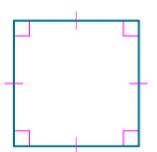
q: The figure has four congruent sides.

r. The figure has four right angles.

a. p and r The figure is a trope2010 and the figure has 41 b. ~p x g The figure is NOT a trope2010 and the figure ha

Example 1

Truth Values of Conjunctions


Students, draw anywhere on this slide!

a. p and r

p and r. The figure is a pentagon, and the figure has four right angles. The statement r is true, and p is false. So, p and r is false.

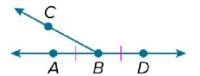
 $\sim p \wedge q$: The figure is not a pentagon, and the figure has four congruent sides. Both $\sim p$ and qare true, so $\sim p \wedge q$ is true.

McGraw Hill | Statements, Conditionals, and Biconditionals

This material may be reproduced for licensed classroomus only and may not be further reproduced or distributed

Example 2

Truth Values of Disjunctions


ABC and (BDare Compl. OR AB FR)

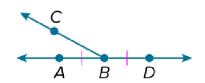
Use the statements to write the disjunction p(v) r. Then find its truth value. Explain your reasoning.

p: $\angle ABC$ and $\angle CBD$ are complementary.

 $g: \angle ABC$ and $\angle CBD$ are vertical angles.

 $r. \overline{AB} \cong \overline{BD}$

Students, draw anywhere on this slide!


Pear Deck Interactive Slide

Example 2

Truth Values of Disjunctions

or \overline{AB} and \overline{BD} are not congruent. $p \lor \sim r$ is false, because p is false and $\sim r$ is false.

McGraw Hill | Statements Conditionals and Biconditionals

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Learn

Conditionals

A **conditional statement** is a compound statement that consists of a premise, or *hypothesis*, and a *conclusion*, which is false only when its hypothesis is true and its conclusion is false.

McGraw Hill | Statements, Conditionals, and Biconditionals

This material may be reproduced for licensed classroomus only and may not be further reproduced or distribute

Learn

Conditionals

Conditional Statements and Related Conditionals

Words

An **if-then statement** is a compound statement of the form "if p, then q," where p and q are statements.

Symbols: $p \rightarrow q$; read if p, then q, or p implies q

The **hypothesis** of an if-then statement is the phrase immediately following the word *if*.

Symbols: $p \rightarrow q$; read if p, then q, or p implies q

Examples

If it rains,

parade will

be

canceled.

McCraw Hill I Statemente Conditionale and Disonditionale

Learn

Conditionals

Conditional Statements and Related Conditionals

Words	Examples
The conclusion of an if-then statement is the phrase	If it rains,
immediately following the word then.	then the
Symbols: $p \rightarrow q$; read if p, then q, or p implies q	parade will
	be
	canceled.

McGraw Hill | Statements, Conditionals, and Biconditionals

This material may be reproduced for licensed classroomus only and may not be further reproduced or distribute

Learn

Conditionals

Conditional Statements and Related Conditionals

Words	Examples
The converse is formed by exchanging the hypothesis	If the
and conclusion of the conditional.	parade is
Symbols: $q \rightarrow p$, read if q, then p, or q implies p	canceled,
	then it has
	rained.

McGraw Hill | Statements, Conditionals, and Biconditionals

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Learn

Conditionals

Conditional Statements and Related Conditionals

Words	Examples
The inverse is formed by negating both the hypothesis	If it does
and conclusion of the conditional.	not rain,
0 1/2	41 41

Symbols: $\sim p \rightarrow \sim q$, read it not p, then not q

tnen tne parade will not be canceled.

McGraw Hill | Statements, Conditionals, and Biconditionals

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed.

Conditionals

Conditional Statements and Related Conditionals

Words	Examples
	If the
hypothesis and the conclusion of the converse of the	parade is
	not
Symbols: $\sim q \rightarrow \sim p$, read if not q, then not p	canceled,
	then it does
	not rain.

McGraw Hill | Statements, Conditionals, and Biconditionals

This material may be reproduced for licensed classroomuse

Example 3

Identify the Hypothesis and Conclusion

Identify the hypothesis and conclusion of each conditional statement.

a. If a polygon has six sides, then it is a hexagon.

b. Another performance will be scheduled if the first one is sold out.

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

a. If a polygon has six sides, then it is a hexagon.

Hypothesis: A polygon has six sides.

Conclusion: The polygon is a hexagon.

b. Another performance will be scheduled if the first one is sold out.

Notice that the word if appears in the second portion of the sentence.

Hypothesis: The first performance is sold out.

Conclusion: Another performance will be scheduled.

McGraw Hill | Statements, Conditionals, and Biconditionals

This material may be reproduced for licensed classroom use only and may not be further reproduced or distributed

Example 3

Identify the Hypothesis and Conclusion

Check

Identify the hypothesis and conclusion of each conditional statement.

a. If the forecast is rain, then I will take an umbrella.

Phypothesis: he forcost is Run

R Conclusion: I will take an unbrella

b. A number is divisible by 10 if its last digit is a 0.

Hypothesis: The last digit is)

Conclusion: A# is div. by 13

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Example 3

Identify the Hypothesis and Conclusion

Check

Identify the hypothesis and conclusion of each conditional statement.

a. If the forecast is rain, then I will take an umbrella.

Hypothesis: The forecast is rain.

Conclusion: I will take an umbrella.

b. A number is divisible by 10 if its last digit is a 0.

Hypothesis: The last digit of a number is 0.

Conclusion: A number is divisible by 10

McGraw Hill | Statements Conditionals and Bicondition

Example 4

Write a Conditional in If-Then Form

Check

Identify the hypothesis and conclusion of the conditional statement If A quadrilateral with two sets of parallel sides is a parallelogram.

Then write the statement in if-then form.

Hypothesis: A Quad w/2 // sides Conclusion: A parallel gram If-then: If a quad w/2 set // side

Students, draw anywhere on this slide!

Pear Deck Interactive Slide

Example 4

Write a Conditional in If-Then Form

Check

Identify the hypothesis and conclusion of the conditional statement A quadrilateral with two sets of parallel sides is a parallelogram. Then write the statement in if-then form.

 \overrightarrow{P} Hypothesis: A quadrilateral has two sets of parallel sides.

Conclusion: The quadrilateral is a parallelogram.

If-then: If a quadrilateral has two sets of parallel sides, then it is a

parallelogram.

McGraw Hill | Statements Conditionals and Biconditional

This material may be reproduced for licensed classroomuse only and may not be further reproduced or distributed

Learn

Biconditionals

You can use logic and biconditional statements to indicate exclusivity in situations. For example, a square is a parallelogram with all four sides and all four angles congruent. You can express this as two if-then