Wednesday, February 2, 2022 7:50 PM

https://app.peardeck.com/student/tcytwanjh

gem

lesson 63

Lesson 6.3 Medians and Altitudes of Triangles

Lesson 6.3 - Medians and Altitudes of Triangles

Learning Intent (Target): *Today I will* be able to use the properties of the points of concurrency to solve problems involving medians § altitudes of triangles.

Success Criteria: <u>I'll know I'll have it when</u> I can accurately use medians and altitudes to determine the distance and location of the points of concurrency.

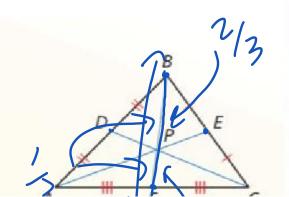
Accountable Team Task: Therefore, I can practice using interactive Pear Deck Powerpoint for notes and geogebra investigations.

G Theorem

Theorem 6.7 Centroid Theorem

The centroid of a triangle is two-thirds of the distance from each vertex to the midpoint of the opposite side.

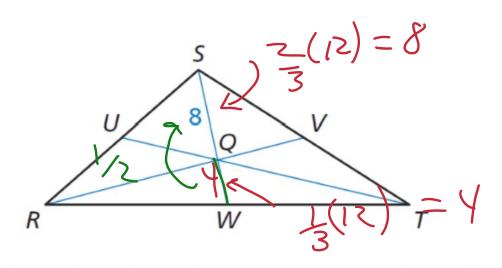
The medians of $\triangle ABC$ meet at point P, and $AP = \frac{2}{3}AE$, $BP = \frac{2}{3}BF$, and $CP = \frac{2}{3}CD$.

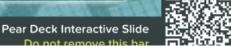


Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

In $\triangle RST$, point Q is the centroid, and SQ = 8. Find QW and SW.





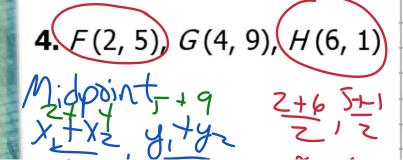
There are three paths through a triangular park. Each path goes from the midpoint - medians of one edge to the opposite corner. The paths meet at point P.

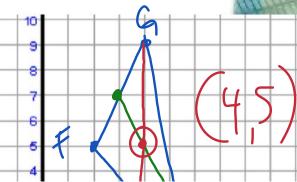
- 1. Find PS and PC when SC = 2100 feet. $3^{(2100)} = (1400)$
- **2.** Find TC and BC when BT = 1000 feet.
- **3.** Find PA and TA when PT = 800 feet.

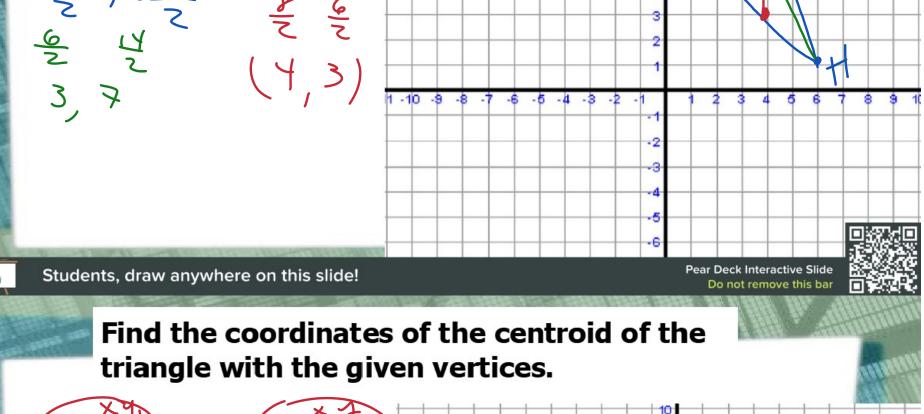
Students, draw anywhere on this slide!

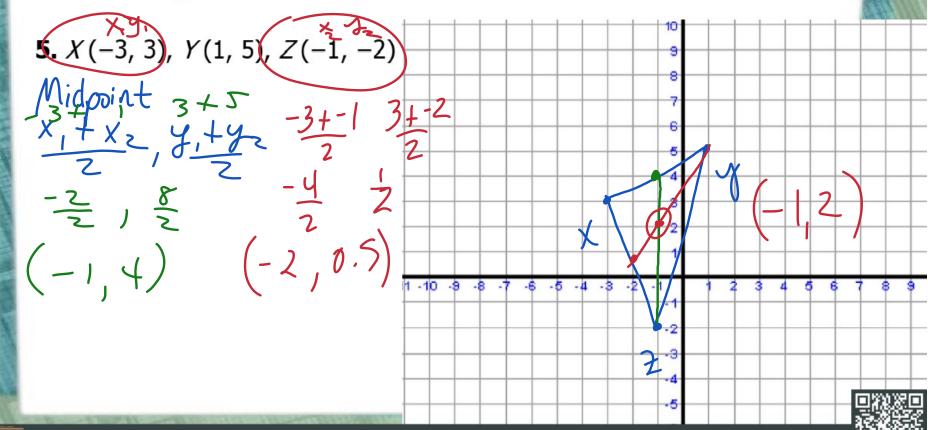
Pear Deck Interactive Slide
Do not remove this bar

Find the coordinates of the centroid of the triangle with the given vertices.







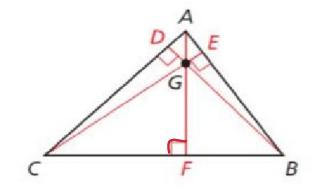


Core Concept

Orthocenter

Leight The lines containing the altitudes of a triangle are concurrent. This point of concurrency is the orthocenter of the triangle.

The lines containing \overline{AF} , \overline{BD} , and \overline{CE} meet at the orthocenter G of $\triangle ABC$.



Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Find the coordinates of the orthocenter of $\triangle XYZ$ with vertices X(-5, -1), Y(-2, 4), and Z(3, -1).

