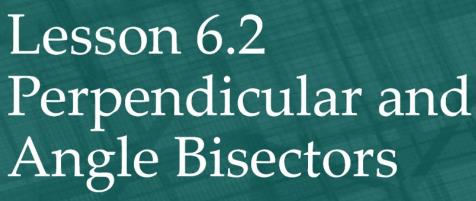
Tuesday, February 1, 2022 6:18 PM

Pear Deck Lesson

https://app.peardeck.com/student/tjpuevrlg

Lesson 6.2



*Points of Concurrency

Lesson 6.2 - Bisectors of Triangles

Learning Intent (Target): <u>Today I will</u> be able to use the properties of the points of concurrency to solve problems invovling bisectors of triangles.

Success Criteria: I'll know I'll have it when I can accuratley use perpendicular and angle bisectors to determine the distance and location of the points of concurrency.

Date:

Accountable Team Task: Therefore, I can practice

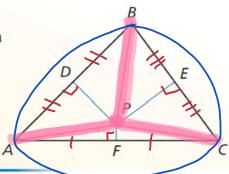
using interactive Pear Deck Powerpoint for notes and geogebra investigations.

Theorem 6.5 Circumcenter Theorem

The circumcenter of a triangle is equidistant from the vertices of the triangle.

If \overline{PD} , \overline{PE} , and \overline{PF} are perpendicular bisectors, then PA = PB = PC.

Proof p. 310



Students, draw anywhere on this slide!

Pear Deck Interactive Slide
Do not remove this bar

Find the coordinates of the circumcenter of $\triangle ABC$ with vertices A(0,3), B(0,-1), and C(6,-1).

with vertices A(0,3),B(0,-1),

Right Traple

Hypotenuse Midn

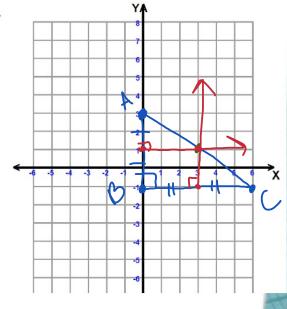
0+6 3+-1

X,+Xz, y,+yz

6

2

(3)



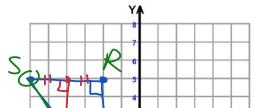
Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Find the coordinates of the circumcenter of the triangle with the given vertices.

2. R(-2, 5) S(-6, 5), T(-2, -1)

Midpoint -67-2 Hypotenuse 5 + -1



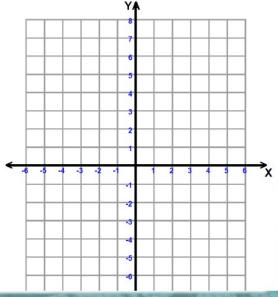
17 / y, tyz -8, y, tyz -8, yz (-4, z)

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Find the coordinates of the circumcenter of the triangle with the given vertices.

3.
$$W(-1, 4), X(1, 4), Y(1, -6)$$



Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Theorem 6.6 Incenter Theorem

The incenter of a triangle is equidistant from the sides of the triangle.

If \overline{AP} , \overline{BP} , and \overline{CP} are angle bisectors of $\triangle ABC$, then PD = PE = PF.

Proof Ex. 38, p. 317

