Learning Intent (Target): <u>Today I will</u> be able to graph polygons in the coordinate plane using transformations.

Success Criteria: <u>I'll know I'll have it when</u> I can accuratley graph combinations of transformations, including rotations in the coordinate plane.

Date: 11/16/21

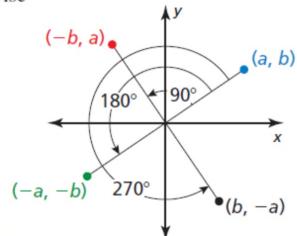
Accountable Team Task: Therefore, I can practice using interactive flip charts for notes & invstigations using gizmos to graph transformations including rotations.

G Core Concept

Coordinate Rules for Rotations about the Origin

When a point (a, b) is rotated counterclockwise about the origin, the following are true.

- For a rotation of 90°, $(a, b) \rightarrow (-b, a)$.
- For a rotation of 180°, $(a, b) \rightarrow (-a, -b)$.
- For a rotation of 270°, $(a, b) \rightarrow (b, -a)$.



*Rotations are rigid motion *Always Counter Clockwise - unless stated

TYPE OF ROTATION	Point on the pre-image	Point on the image (After rotation)
Rotation of 90° (clock wise)	(x,y)	(y,-x)
Rotation of 90° (counter clock wise)	(x,y)	(-y,x)
Rotation of 180° (clock wise & counter clock wise)	(x,y)	(-x,-y)
Rotation of 270° (clock wise)	(x,y)	(-y,x)
Rotation of 270° (counter clock wise)	(x,y)	(y,-x)

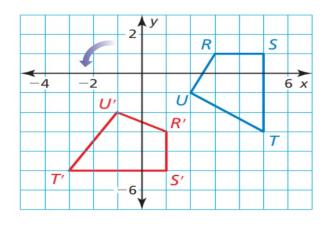
Graph quadrilateral RSTU with vertices R(3, 1), S(5, 1), T(5, -3), and U(2, -1) and its image after a 270° rotation about the origin.

SOLUTION

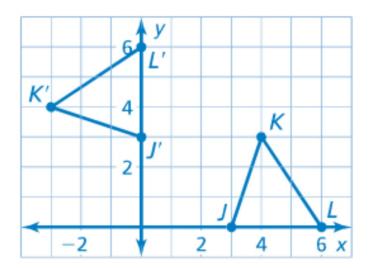
Use the coordinate rule for a 270° rotation to find the coordinates of the vertices of the image. Then graph quadrilateral *RSTU* and its image.

$$(a, b) \rightarrow (b, -a)$$

 $R(3, 1) \rightarrow R'(1, -3)$
 $S(5, 1) \rightarrow S'(1, -5)$
 $T(5, -3) \rightarrow T'(-3, -5)$
 $U(2, -1) \rightarrow U'(-1, -2)$



2. Graph $\triangle JKL$ with vertices J(3, 0), K(4, 3), and L(6, 0) and its image after a 90° rotation about the origin.



Graph \overline{RS} with endpoints R(1, -3) and S(2, -6) and its image after the composition.

Reflection: in the *y* -axis

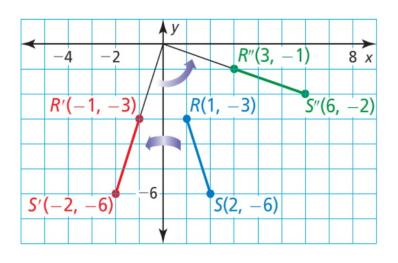
Rotation: 90° about the origin

SOLUTION

Step 1 Graph \overline{RS} .

Step 2 Reflect \overline{RS} in the y-axis. $\overline{R'S'}$ has endpoints R'(-1, -3) and S'(-2, -6).

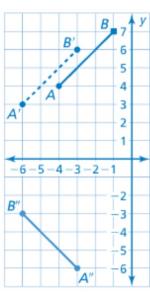
Step 3 Rotate $\overline{R'S'}$ 90° about the origin. $\overline{R''S''}$ has endpoints R''(3, -1) and S''(6, -2).



5. Graph \overline{AB} with endpoints A(-4, 4) and B(-1, 7) and its image after the composition.

Translation $(x, y) \rightarrow (x-2, y-1)$ **Rotation**90° about the origin

KULALIUH. 20 ADOUL HIC OHISHI



6. Graph $\triangle TUV$ with vertices T (1, 2), U (3, 5), and V (6, 3) and its image after the composition.

Rotation: 180° about the origin

Reflection: in the x-axis

