

Learning Intent (Target): Today I will be able to use properties of parallel & peprendicular lines. Prove theorems about parallel and perpendicular lines.

Date: 10/19/21

Success Criteria: I'll know I'll have it when I'll be able to use theorems about parallel lines & transversals to determine missing angle measures. Find the distance between lines.

Accountable Team Task: Therefore, I can practice from interactive flip charts and apply it to problem solving.

*Color Code Congruent Angles

6 Theorems

Theorem 3.1 Corresponding Angles Theorem

If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.

Examples In the diagram at the left, $\angle 2 \cong \angle 6$ and $\angle 3 \cong \angle 7$.

Proof Ex. 36, p. 180

Theorem 3.2 Alternate Interior Angles Theorem

If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.

Examples In the diagram at the left, $\angle 3 \cong \angle 6$ and $\angle 4 \cong \angle 5$.

Proof Example 4, p. 134

Theorem 3.3 Alternate Exterior Angles Theorem

If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.

Examples In the diagram at the left, $\angle 1 \cong \angle 8$ and $\angle 2 \cong \angle 7$.

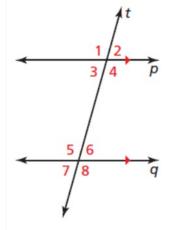
Proof Ex. 15, p. 136

Theorem 3.4 Consecutive Interior Angles Theorem

If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.

Examples In the diagram at the left, $\angle 3$ and $\angle 5$ are supplementary, and $\angle 4$ and $\angle 6$ are supplementary.

Proof Ex. 16, p. 136

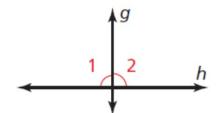


Theorem 3.10 Linear Pair Perpendicular Theorem

If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.

If $\angle 1 \cong \angle 2$, then $g \perp h$.

Proof Ex. 13, p. 153

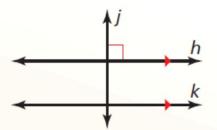


Theorem 3.11 Perpendicular Transversal Theorem

In a plane, if a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other line.

If $h \parallel k$ and $j \perp h$, then $j \perp k$.

Proof Example 2, p. 150; Question 2, p. 150

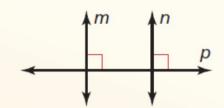


Theorem 3.12 Lines Perpendicular to a Transversal Theorem

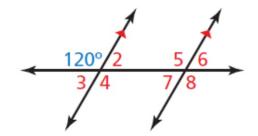
In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.

If $m \perp p$ and $n \perp p$, then $m \parallel n$.

Proof Ex. 14, p. 153; Ex. 47, p. 162



The measures of three of the numbered angles are 120°. Identify the angles. Explain your reasoning.



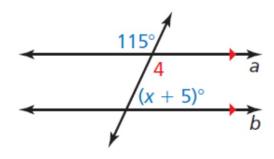
By the Alternate Exterior Angles Theorem, $m \angle 8 = 120^{\circ}$.

 $\angle 5$ and $\angle 8$ are vertical angles. Using the Vertical Angles Congruence Theorem (Theorem 2.6), $m\angle 5 = 120^{\circ}$.

 $\angle 5$ and $\angle 4$ are alternate interior angles. By the Alternate Interior Angles Theorem, $\angle 4 = 120^{\circ}$.

So, the three angles that each have a measure of 120° are $\angle 4$, $\angle 5$, and $\angle 8$.

Find the value of x.



SOLUTION

By the Vertical Angles Congruence Theorem (Theorem 2.6), $m \angle 4 = 115^{\circ}$. Lines a and b are parallel, so you can use the theorems about parallel lines.

Check

$$115^{\circ} + (x+5)^{\circ} = 180^{\circ}$$

$$115 + (60 + 5) \stackrel{?}{=} 180$$

$$180 = 180$$

$$m \angle 4 + (x + 5)^{\circ} = 180^{\circ}$$

 $115^{\circ} + (x + 5)^{\circ} = 180^{\circ}$
 $x + 120 = 180$

$$x = 60$$

So, the value of x is 60.

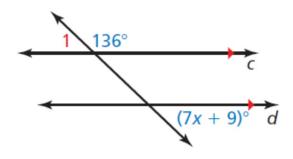
Consecutive Interior Angles Theorem

Substitute 115° for $m \angle 4$.

Combine like terms.

Subtract 120 from each side.

Find the value of x.



SOLUTION

By the Linear Pair Postulate (Postulate 2.8), $m \angle 1 = 180^{\circ} - 136^{\circ} = 44^{\circ}$. Lines c and d are parallel, so you can use the theorems about parallel lines.

Check
$$m \angle 1 = (7x + 9)^{\circ}$$

$$44^\circ = (7x + 9)^\circ$$

$$35 = 7x$$

$$5 = x$$

Alternate Exterior Angles Theorem

Substitute 44° for $m \angle 1$.

Subtract 9 from each side.

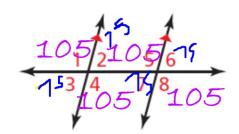
Divide each side by 7.

$$44^{\circ} = (7x + 9)^{\circ}$$
$$44 \stackrel{?}{=} 7(5) + 9$$

So, the value of x is 5.

Use the diagram.

1. Given $m \angle 1 = 105^{\circ}$, find $m \angle 4$, $m \angle 5$, and $m \angle 8$. Tell which theorem you use in each case.



1 § 4 are vertical angles 1 § 5 are corresponding

2. Given $m \angle 3 = 68^{\circ}$ and $m \angle 8 = (2x + 4)^{\circ}$, what is the value of x? Show your steps.

1 § 8 are alternate exterior

angles

$$68 + 2x + 4 = 180 \text{ or } 180-68 = 112$$
 $72 + 2x = 180$
 -72
 -72
 -74
 -4

$$2x = 108$$
 $2x = 108$
 $x = 54$ $x = 54$