
When viewed from the side, the frame of a ball-return net forms a pair of supplementary angles with the ground. Find $m \angle BCE$ and $m \angle ECD$.

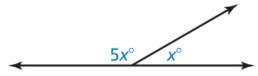
Step 1 Use the fact that the sum of the measures of supplementary angles is 180°.

$$m \angle BCE + m \angle ECD = 180^{\circ}$$
 Write an equation.
 $(4x + 8)^{\circ} + (x + 2)^{\circ} = 180^{\circ}$ Substitute angle measures.
 $5x + 10 = 180$ Combine like terms.
 $x = 34$ Solve for x .

Step 2 Evaluate the given expressions when x = 34.

$$m \angle BCE = (4x + 8)^{\circ} = (4 \cdot 34 + 8)^{\circ} = 144^{\circ}$$

 $m \angle ECD = (x + 2)^{\circ} = (34 + 2)^{\circ} = 36^{\circ}$


So, $m \angle BCE = 144^{\circ}$ and $m \angle ECD = 36^{\circ}$.

5. $\angle LMN$ and $\angle PQR$ are complementary angles. Find the measures of the angles when $m \angle LMN = (4x - 2)^{\circ}$ and $m \angle PQR = (9x + 1)^{\circ}$.

$$m\angle LMN = 26^{\circ}; m\angle PQR = 64^{\circ}$$

Two angles form a linear pair. The measure of one angle is five times the measure of the other angle. Find the measure of each angle.

Step 1 Draw a diagram. Let x° be the measure of one angle. The measure of the other angle is $5x^{\circ}$.

Step 2 Use the fact that the angles of a linear pair are supplementary to write an equation.

$$x^{\circ} + 5x^{\circ} = 180^{\circ}$$
 Write an equation.
 $6x = 180$ Combine like terms.
 $x = 30$ Divide each side by 6.

The measures of the angles are 30° and $5(30^{\circ}) = 150^{\circ}$.