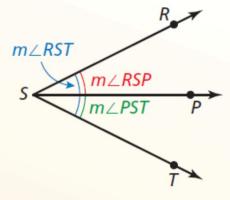
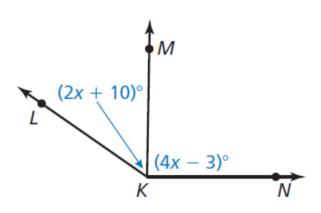


Success Criteria: <u>I'll know I'll have it when</u> I'll be able to use the angle addition postulate to determine angle measures.

Accountable Team Task: Therefore, I can practice using postulates from interactive flip charts and apply it to problem solving.



Postulate 1.4 Angle Addition Postulate


Words If *P* is in the interior of $\angle RST$, then the measure of $\angle RST$ is equal to the sum of the measures of $\angle RSP$ and $\angle PST$.

Symbols If *P* is in the interior of $\angle RST$, then

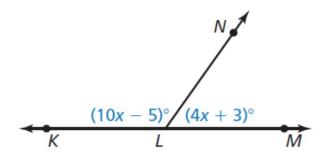
 $m \angle RST = m \angle RSP + m \angle PST$.

Given that $m \angle LKN = 145^{\circ}$, find $m \angle LKM$ and $m \angle MKN$.

SOLUTION

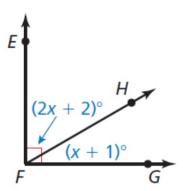
Step 1 Write and solve an equation to find the value of x.

$$m \angle LKN = m \angle LKM + m \angle MKN$$
 Angle Addition Postulate
 $145^{\circ} = (2x + 10)^{\circ} + (4x - 3)^{\circ}$ Substitute angle measures.
 $145 = 6x + 7$ Combine like terms.
 $138 = 6x$ Subtract 7 from each side.
 $23 = x$ Divide each side by 6.


Step 2 Evaluate the given expressions when x = 23.

$$m \angle LKM = (2x + 10)^{\circ} = (2 \cdot 23 + 10)^{\circ} = 56^{\circ}$$

 $m \angle MKN = (4x - 3)^{\circ} = (4 \cdot 23 - 3)^{\circ} = 89^{\circ}$


So, $m \angle LKM = 56^{\circ}$, and $m \angle MKN = 89^{\circ}$.

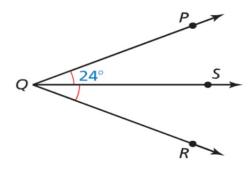
Find the indicated angle measures.

8. Given that $\angle KLM$ is a straight angle, find $m \angle KLN$ and $m \angle NLM$.

9. Given that $\angle \mathit{EFG}$ is a right angle, find $m \angle \mathit{EFH}$ and $m \angle \mathit{HFG}$.

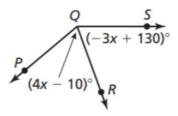
- **8.** Given that $\angle KLM$ is a straight angle, find $m\angle KLN$ and $m\angle NLM$. 125°, 55°
- **9.** Given that $\angle EFG$ is a right angle, find $m\angle EFH$ and $m\angle HFG$. 60°, 30°

 \overrightarrow{QS} bisects $\angle PQR$, and $m \angle PQS = 24^{\circ}$. Find $m \angle PQR$.


SOLUTION

Step 1 Draw a diagram.

Step 2 Because \overrightarrow{QS} bisects $\angle PQR$, $m\angle PQS = m\angle RQS$. So, $m\angle RQS = 24^\circ$. Use the Angle Addition Postulate to find $m\angle PQR$.


$$m\angle PQR = m\angle PQS + m\angle RQS$$

= $24^{\circ} + 24^{\circ}$
= 48°

So, $m \angle PQR = 48^{\circ}$.

Angle Addition Postulate
Substitute angle measures.
Add.

9. \overrightarrow{QR} bisects $\angle PQS$. Find $m\angle PQR$ and $m\angle PQS$.

$$-3x +130 = 4x -10$$

 $+3x +3x$

$$130 = 7x - 10$$

 $+10$ $+10$

$$20 = x$$

Next substitute in 20 for x for each angle

4(20)-10 = 80-10 = 70 for angle PQR

the entire angle PQS = 70 + 70 = 140