Date: 9/3/21

Lesson 1.3 Using Distance and Midpoint Formulas

Learning Intent (Target): *Today I will* be able to describe and determine the midpoint and distance between two points on the coordinate plane.

Success Criteria: <u>I'll know I'll have it when</u> I'll be able to use the formulas to solve and prove the distance § midpoint of line segments on the coordinate plane.

Accountable Team Task: <u>Therefore, I can prove the distance</u> and midpoint formulas using interactive flip charts, desmos, foldables, and gizmos activities.

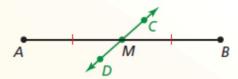
G Core Concept

Midpoints and Segment Bisectors

The **midpoint** of a segment is the point that divides the segment into two congruent segments.

M is the midpoint of \overline{AB} . So, $\overline{AM} \cong \overline{MB}$ and $\overline{AM} = \overline{MB}$.

A segment bisector is a point, ray, line, line segment, or plane that intersects the segment at its midpoint. A midpoint or a segment bisector bisects a segment.



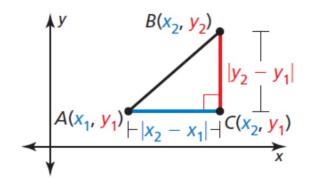
 \overrightarrow{CD} is a segment bisector of \overrightarrow{AB} . So, $\overrightarrow{AM} \cong \overrightarrow{MB}$ and $\overrightarrow{AM} = \overrightarrow{MB}$.

G Core Concept

The Distance Formula

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the distance between A and B is

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$



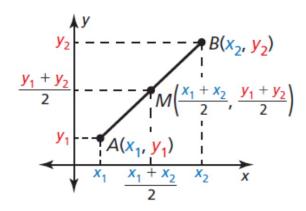
G Core Concept

The Midpoint Formula

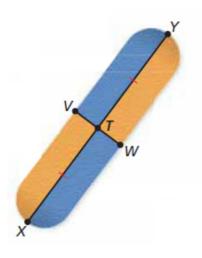
The coordinates of the midpoint of a segment are the averages of the *x*-coordinates and of the *y*-coordinates of the endpoints.

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in a coordinate plane, then the midpoint M of \overline{AB} has coordinates

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
.



In the skateboard design, \overline{VW} bisects \overline{XY} at point T, and XT = 39.9 cm. Find XY.



In the skateboard design, \overline{VW} bisects \overline{XY} at point T, and XT = 39.9 cm. Find XY.

SOLUTION

Point *T* is the midpoint of \overline{XY} . So, XT = TY = 39.9 cm.

$$XY = XT + TY$$

Segment Addition Postulate

$$= 39.9 + 39.9$$

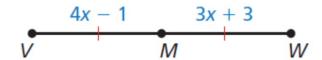
Substitute.

$$= 79.8$$

Add.

So, the length of \overline{XY} is 79.8 centimeters.

Point M is the midpoint of \overline{VW} . Find the length of \overline{VM} .



SOLUTION

Step 1 Write and solve an equation. Use the fact that VM = MW.

$$VM = MW$$
 Write the equation.

$$4x - 1 = 3x + 3$$
 Substitute.

$$x - 1 = 3$$
 Subtract 3x from each side.

$$x = 4$$
 Add 1 to each side.

Check

Because VM = MW, the length of \overline{MW} should be 15.

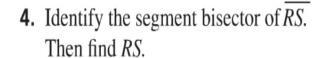
$$MW = 3x + 3 = 3(4) + 3 = 15$$

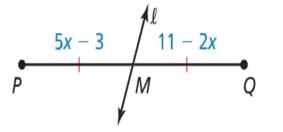
Step 2 Evaluate the expression for *VM* when x = 4.

$$VM = 4x - 1 = 4(4) - 1 = 15$$

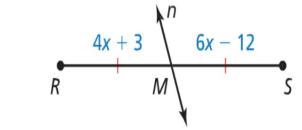
So, the length of \overline{VM} is 15.

3. Identify the segment bisector of \overline{PQ} . Then find MQ.





line ℓ ; 7



line *n*; 66

- **a.** The endpoints of \overline{RS} are R(1, -3) and S(4, 2). Find the coordinates of the midpoint M.
- **b.** The midpoint of \overline{JK} is M(2, 1). One endpoint is J(1, 4). Find the coordinates of endpoint K.

SOLUTION

a. Use the Midpoint Formula.

$$M\left(\frac{1+4}{2}, \frac{-3+2}{2}\right) = M\left(\frac{5}{2}, -\frac{1}{2}\right)$$

- The coordinates of the midpoint M are $\left(\frac{5}{2}, -\frac{1}{2}\right)$.
- **b.** Let (*x*, *y*) be the coordinates of endpoint *K*. Use the Midpoint Formula.

Step 1
 Find x.
 Step 2
 Find y.

$$\frac{1+x}{2} = 2$$
 $\frac{4+y}{2} = 1$
 $1+x=4$
 $4+y=2$
 $x=3$
 $y=-2$

