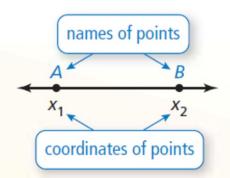
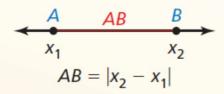
Lesson 1.2 Measuring & Constructing Segments

Learning Intent (Target): Today I will be able to describe geometric figures & understand equality/congruence of geometric figures.

Success Criteria: <u>I'll know I'll have it when</u> I'll be able to describe and measure geometric figures using ruler and segment addition postulates.

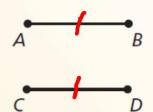

Accountable Team Task: <u>Therefore, I can</u> define key vocabulary terms, matching vocabulary activity, flip chart and workbook independent practice.



Postulate 1.1 Ruler Postulate

The points on a line can be matched one to one with the real numbers. The real number that corresponds to a point is the **coordinate** of the point.

The **distance** between points A and B, written as AB, is the absolute value of the difference of the coordinates of A and B.



G Core Concept

Congruent Segments

Line segments that have the same length are called <u>congruent segments</u>. You can say "the <u>length</u> of \overline{AB} is equal to the length of \overline{CD} ," or you can say " \overline{AB} is congruent to \overline{CD} ." The symbol \cong means "is congruent to."

Segments are congruent. $\overline{AB} \cong \overline{CD}$

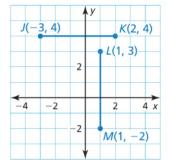
"is congruent to"

Plot J(-3, 4), K(2, 4), L(1, 3), and M(1, -2) in a coordinate plane.

Then determine whether \overline{JK} and \overline{LM} are congruent.

Plot J(-3, 4), K(2, 4), L(1, 3), and M(1, -2) in a coordinate plane. Then determine whether JK and LM are congruent.

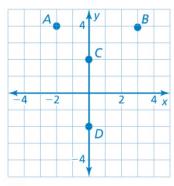
SOLUTION


Plot the points, as shown. To find the length of a horizontal segment, find the absolute value of the difference of the *x*-coordinates of the endpoints.

$$JK = |2 - (-3)| = 5$$
 Ruler Postulate

To find the length of a vertical segment, find the absolute value of the difference of the *y*-coordinates of the endpoints.

$$LM = |-2 - 3| = 5$$
 Ruler Postulate


▶ \overline{JK} and \overline{LM} have the same length. So, $\overline{JK} \cong \overline{LM}$.

5. Plot A(-2, 4), B(3, 4), C(0, 2), and D(0, -2) in a coordinate plane.

Then determine whether \overline{AB} and \overline{CD} are congruent.

5. Plot A(-2, 4), B(3, 4), C(0, 2), and D(0, -2) in a coordinate plane. Then determine whether \overline{AB} and \overline{CD} are congruent.

no