

Extra Practice

In Exercises 1 and 2, write a proof.

1. Given $\overline{BD} \perp \overline{AC}$, $\overline{AD} \cong \overline{CD}$

Prove $\triangle ABD \cong \triangle CBD$

STATEMENTS

REASONS

5.3 Extra Practice

1. STATEMENTS

1. $\overline{AD} \cong \overline{CD}$

2. $\overline{BD} \perp \overline{AC}$

3. $\angle BDA \cong \angle BDC$

4. $\overline{BD} \cong \overline{BD}$

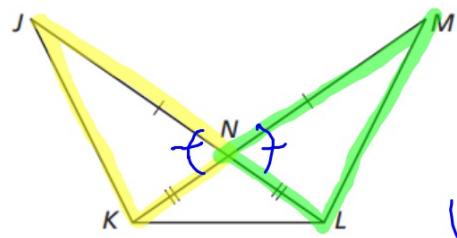
5. $\triangle ABD \cong \triangle CBD$

REASONS

1. Given

2. Given

3. Linear Pair Perpendicular Theorem (Thm. 3.10)


4. Reflexive Property of Congruence (Thm. 2.1)

5. SAS Congruence Theorem (Thm. 5.5)

Right \angle is \cong 90°
def. right \angle

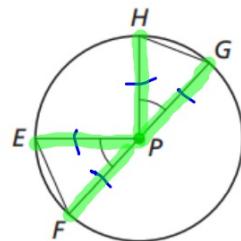
2. Given $\overline{JN} \cong \overline{MN}$, $\overline{NK} \cong \overline{NL}$

Prove $\triangle JNK \cong \triangle MNL$

✓✓

STATEMENTS

REASONS


S

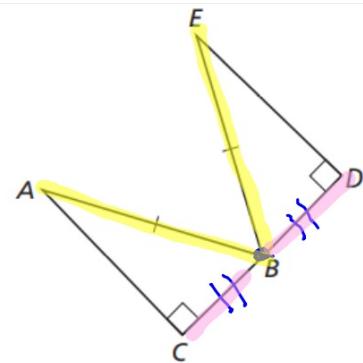
2. STATEMENTS	REASONS
1. $\overline{JN} \cong \overline{MN}$	1. Given
2. $\overline{NK} \cong \overline{NL}$	2. Given
3. $\angle JNK \cong \angle MNL$	3. Vertical Angles Congruence Theorem (Thm. 2.6)
4. $\triangle JNK \cong \triangle MNL$	4. SAS Congruence Theorem (Thm. 5.5)

In Exercises 3 and 4, use the given information to name two triangles that are congruent. Explain your reasoning.

3. $\angle EPF \cong \angle GPH$, and P is the center of the circle.

given

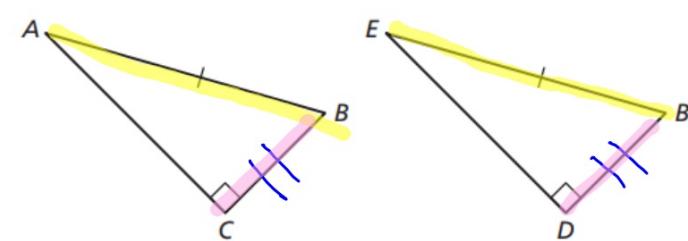
SAS


radii

3. $\triangle EPF \cong \triangle GPH$; Because all points on a circle are the same distance from the center, $\overline{PE} \cong \overline{PG}$ and $\overline{PF} \cong \overline{PH}$. It is given that $\angle EPF \cong \angle GPH$. So, $\triangle EPF \cong \triangle GPH$ by the SAS Congruence Theorem (Thm. 5.5).

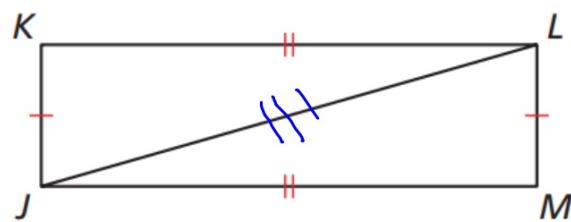
6. Redraw the triangles so they are side by side with corresponding parts in the same position. Then write a proof.

Given B is the midpoint of \overline{CD} ,
 $\overline{AB} \cong \overline{EB}$, $\angle C$ and $\angle D$ are right angles.

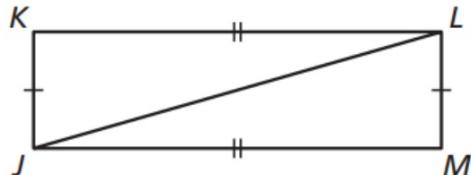

Prove $\triangle ABC \cong \triangle EBD$

STATEMENTS

REASONS


6.

STATEMENTS	REASONS
1. B is the midpoint of \overline{CD} , $AB \cong EB$, $\angle C$ and $\angle D$ are right angles.	1. Given
2. $\overline{BC} \cong \overline{BD}$	2. Definition of midpoint
3. $\triangle ABC$ and $\triangle EBD$ are right triangles.	3. Definition of a right triangle
4. $\triangle ABC \cong \triangle EBD$	4. HL Congruence Theorem (Thm. 5.9)


15. Given $\overline{LM} \cong \overline{JK}$, $\overline{MJ} \cong \overline{KL}$

Prove $\triangle LMJ \cong \triangle JKL$

15. Given $\overline{LM} \cong \overline{JK}, \overline{MJ} \cong \overline{KL}$

Prove $\triangle LMJ \cong \triangle JKL$

STATEMENTS

REASONS

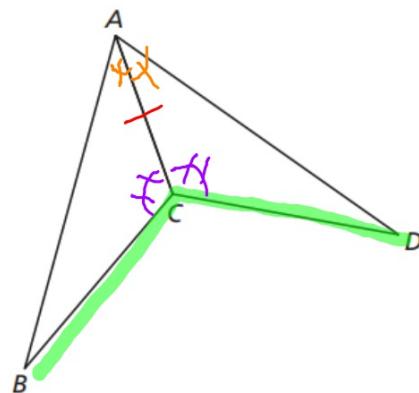
1. $\overline{LM} \cong \overline{JK}, \overline{MJ} \cong \overline{KL}$

1. Given

2. $\overline{JL} \cong \overline{JL}$

2. Reflexive Property of Congruence (Thm. 2.1)

3. $\triangle LMJ \cong \triangle JKL$


3. SSS Congruence Theorem (Thm. 5.8)

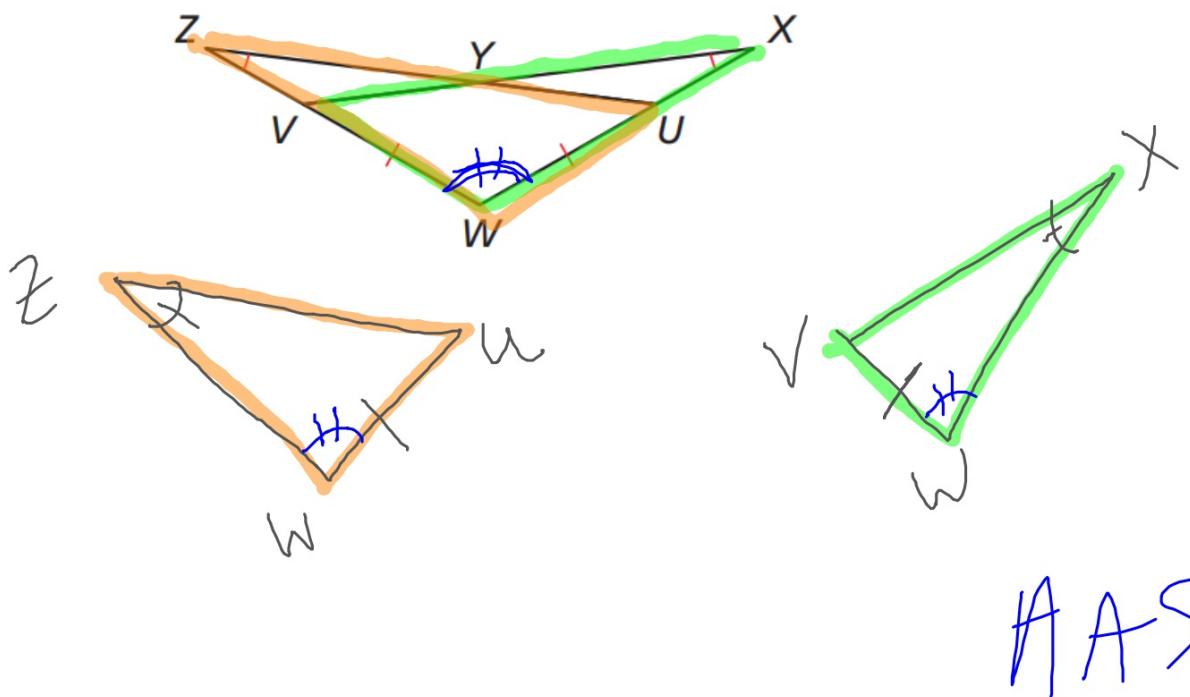
5.6 Notetaking with Vocabulary (continued)

7. Prove that the triangles are congruent using the ASA Congruence Theorem (Theorem 5.10).

Given \overline{AC} bisects $\angle DAB$ and $\angle DCB$.

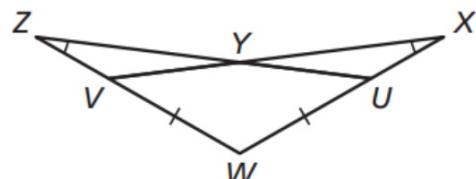
Prove $\triangle ABC \cong \triangle ADC$

STATEMENTS


REASONS

7.

STATEMENTS	REASONS
1. \overline{AC} bisects $\angle DAB$ and $\angle DCB$.	1. Given
2. $\angle CAB \cong \angle CAD$	2. Definition of angle bisector
3. $\angle ACB \cong \angle ACD$	3. Definition of angle bisector
4. $\overline{AC} \cong \overline{AC}$	4. Reflexive Property of Congruence (Thm. 2.2)
5. $\triangle ABC \cong \triangle ADC$	5. ASA Congruence Theorem (Thm. 5.10)


19. Given $\overline{VW} \cong \overline{UW}$, $\angle X \cong \angle Z$

Prove $\triangle XWV \cong \triangle ZWU$

19. Given $\overline{VW} \cong \overline{UW}$,
 $\angle X \cong \angle Z$

Prove $\triangle XWV \cong \triangle ZWU$

STATEMENTS	REASONS
1. $\overline{VW} \cong \overline{UW}$, $\angle X \cong \angle Z$	1. Given
2. $\angle W \cong \angle W$	2. Reflexive Property of Congruence (Thm. 2.2)
3. $\triangle XWV \cong \triangle ZWU$	3. AAS Congruence Theorem (Thm. 5.11)