

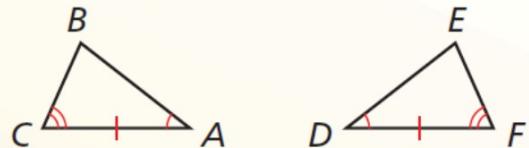
Date: 12/15/20

Lesson 5.6 - ASA and AAS Triangle Congruency

Learning Intent (Target): Today I will be able to determine whether or not triangles are congruent based on Angle-Side-Angle & Angle-Angle-Sides Congruency.

Success Criteria: I'll know I'll have it when I can accurately determine if triangles are congruent and write 2-column proofs using ASA & AAS Congruency for Triangles.

Accountable Team Task: I therefore, I can practice using interactive flip charts for notes and investigations using gizmos & creating foldables.

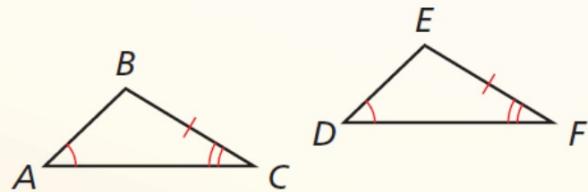

Theorem

Theorem 5.10 Angle-Side-Angle (ASA) Congruence Theorem

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

If $\angle A \cong \angle D$, $\overline{AC} \cong \overline{DF}$, and $\angle C \cong \angle F$,
then $\triangle ABC \cong \triangle DEF$.

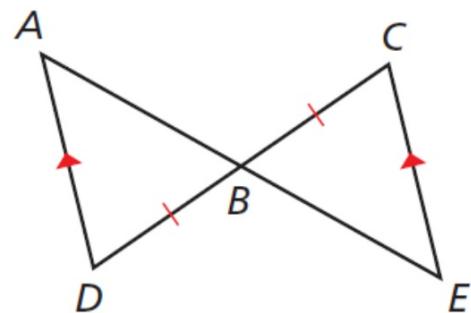
Proof p. 270


Theorem

Theorem 5.11 Angle-Angle-Side (AAS) Congruence Theorem

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

If $\angle A \cong \angle D$, $\angle C \cong \angle F$,
and $\overline{BC} \cong \overline{EF}$, then
 $\triangle ABC \cong \triangle DEF$.

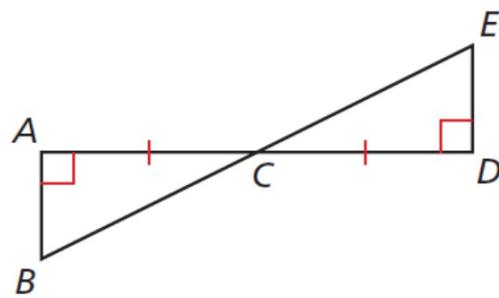

Proof p. 271

Write a proof.

Given $\overline{AD} \parallel \overline{EC}$, $\overline{BD} \cong \overline{BC}$

Prove $\triangle ABD \cong \triangle EBC$

STATEMENTS


1. $\overline{AD} \parallel \overline{EC}$
A 2. $\angle D \cong \angle C$

S 3. $\overline{BD} \cong \overline{BC}$
A 4. $\angle ABD \cong \angle EBC$

5. $\triangle ABD \cong \triangle EBC$

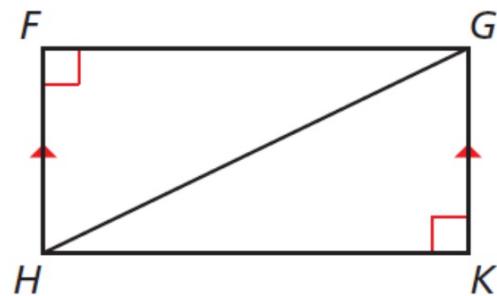
REASONS

1. Given
2. Alternate Interior Angles Theorem
(Thm. 3.2)

3. Given
4. Vertical Angles Congruence Theorem
(Thm 2.6)

5. ASA Congruence Theorem

2. In the diagram, $\overline{AB} \perp \overline{AD}$, $\overline{DE} \perp \overline{AD}$, and $\overline{AC} \cong \overline{DC}$. Prove $\triangle ABC \cong \triangle DEC$.



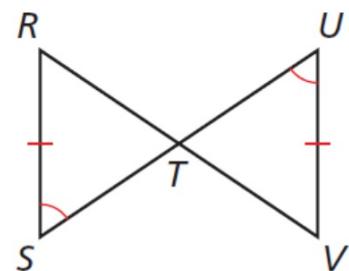
STATEMENTS	REASONS
1. $\overline{AB} \perp \overline{AD}$, $\overline{DE} \perp \overline{AD}$, $\overline{AC} \cong \overline{DC}$	1. Given
2. $\angle BAC$ and $\angle EDC$ are right angles.	2. Definition of perpendicular lines
3. $\angle BAC \cong \angle EDC$	3. Right Angles Congruence Theorem (Thm. 2.3)
4. $\angle ACB \cong \angle DCE$	4. Vertical Angles Congruence Theorem (Thm. 2.6)
5. $\triangle ABC \cong \triangle DEC$	5. ASA Congruence Theorem (Thm. 5.10)

Write a proof.

Given $\overline{HF} \parallel \overline{GK}$, $\angle F$ and $\angle K$ are right angles.

Prove $\triangle HFG \cong \triangle GKH$

STATEMENTS


1. $\overline{HF} \parallel \overline{GK}$
- A 2. $\angle GHF \cong \angle HGK$
3. $\angle F$ and $\angle K$ are right angles.
- A 4. $\angle F \cong \angle K$
- S 5. $\overline{HG} \cong \overline{GH}$
6. $\triangle HFG \cong \triangle GKH$

REASONS

1. Given
2. Alternate Interior Angles Theorem
(Theorem 3.2)
3. Given
4. Right Angles Congruence Theorem
(Theorem 2.3)
5. Reflexive Property of Congruence
(Theorem 2.1)
6. AAS Congruence Theorem

3. In the diagram, $\angle S \cong \angle U$ and $RS \cong VU$. Prove $\triangle RST \cong \triangle VUT$.

STATEMENTS	REASONS
1. $\angle S \cong \angle U$, $\overline{RS} \cong \overline{VU}$	1. Given
2. $\angle RTS \cong \angle VTU$	2. Vertical Angles Congruence Theorem (Thm. 2.6)
3. $\triangle RST \cong \triangle VUT$	3. AAS Congruence Theorem (Thm. 5.11)
... . . .	