

Date: 12/15/20

Lesson 5.3 - SAS Triangle Congruency

Learning Intent (Target): Today I will be able to
determine whether or not triangles are congruent based
on Side-Angle-Side Congruency.

Success Criteria: I'll know I'll have it when I can accurately
determine if triangles are congruent and write 2-column
proofs using SAS Congruency for Triangles.

Accountable Team Task: I therefore, I can practice
using interactive flip charts for notes and investigations using
gizmos & creating foldables.

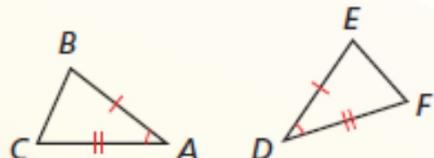
Theorem

Theorem 5.5 Side-Angle-Side (SAS) Congruence Theorem

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

If $\overline{AB} \cong \overline{DE}$, $\angle A \cong \angle D$, and $\overline{AC} \cong \overline{DF}$,
then $\triangle ABC \cong \triangle DEF$.

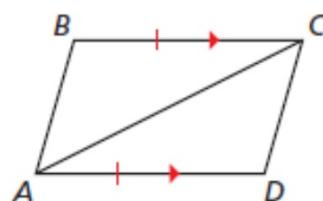
Proof p. 246



Write a proof.

Given $\overline{BC} \cong \overline{DA}$, $\overline{BC} \parallel \overline{AD}$

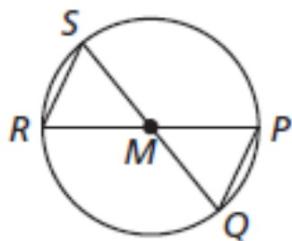
Prove $\triangle ABC \cong \triangle CDA$



SOLUTION

STATEMENTS	REASONS
S 1. $\overline{BC} \cong \overline{DA}$	1. Given
2. $\overline{BC} \parallel \overline{AD}$	2. Given
A 3. $\angle BCA \cong \angle DAC$	3. Alternate Interior Angles Theorem (Thm. 3.2)
S 4. $\overline{AC} \cong \overline{CA}$	4. Reflexive Property of Congruence (Thm. 2.1)
5. $\triangle ABC \cong \triangle CDA$	5. SAS Congruence Theorem

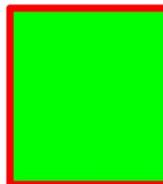
In the diagram, \overline{QS} and \overline{RP} pass through the center M of the circle. What can you conclude about $\triangle MRS$ and $\triangle MPQ$?



SOLUTION

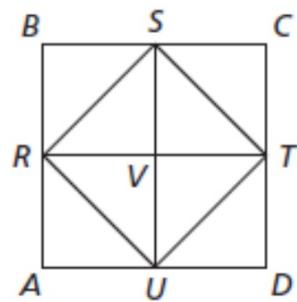
Because they are vertical angles, $\angle PMQ \cong \angle RMS$. All points on a circle are the same distance from the center, so \overline{MP} , \overline{MQ} , \overline{MR} , and \overline{MS} are all congruent.

► So, $\triangle MRS$ and $\triangle MPQ$ are congruent by the SAS Congruence Theorem.



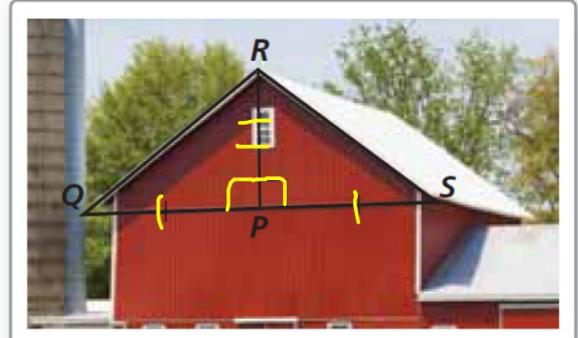
In the diagram, $ABCD$ is a square with four congruent sides and four right angles. R , S , T , and U are the midpoints of the sides of $ABCD$. Also, $\overline{RT} \perp \overline{SU}$ and $\overline{SV} \cong \overline{VU}$.

1. Prove that $\triangle SVR \cong \triangle UVR$.



STATEMENTS	REASONS
1. $\overline{SV} \cong \overline{VU}$, $\overline{RT} \perp \overline{SU}$	1. Given
2. $\overline{VR} \cong \overline{VR}$	2. Reflexive Property of Congruence (Thm. 2.1)
3. $\angle SVR$ and $\angle UVR$ are right angles.	3. Definition of perpendicular lines
4. $\angle SVR \cong \angle UVR$	4. Right Angles Congruence Theorem (Thm. 2.3)
5. $\triangle SVR \cong \triangle UVR$	5. SAS Congruence Theorem (Thm. 5.5)

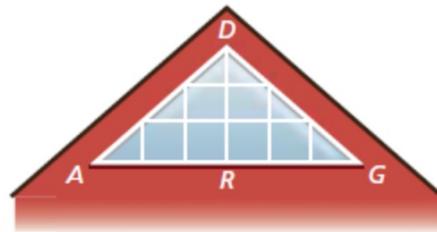
You are making a canvas sign to hang on the triangular portion of the barn wall shown in the picture. You think you can use two identical triangular sheets of canvas. You know that $\overline{RP} \perp \overline{QS}$ and $\overline{PQ} \cong \overline{PS}$. Use the SAS Congruence Theorem to show that $\triangle PQR \cong \triangle PSR$.



You are given that $\overline{PQ} \cong \overline{PS}$. By the Reflexive Property of Congruence (Theorem 2.1), $\overline{RP} \cong \overline{RP}$. By the definition of perpendicular lines, both $\angle RPQ$ and $\angle RPS$ are right angles, so they are congruent. So, two pairs of sides and their included angles are congruent.

- $\triangle PQR$ and $\triangle PSR$ are congruent by the SAS Congruence Theorem.

3. You are designing the window shown in the photo. You want to make $\triangle DRA$ congruent to $\triangle DRG$. You design the window so that $\overline{DA} \cong \overline{DG}$ and $\angle ADR \cong \angle GDR$. Use the SAS Congruence Theorem to prove $\triangle DRA \cong \triangle DRG$.



STATEMENTS	REASONS
1. $\overline{DA} \cong \overline{DG}$, $\angle ADR \cong \angle GDR$	1. Given
2. $\overline{DR} \cong \overline{DR}$	2. Reflexive Property of Congruence (Thm. 2.1)
3. $\triangle DRA \cong \triangle DRG$	3. SAS Congruence Theorem (Thm. 5.5)

