

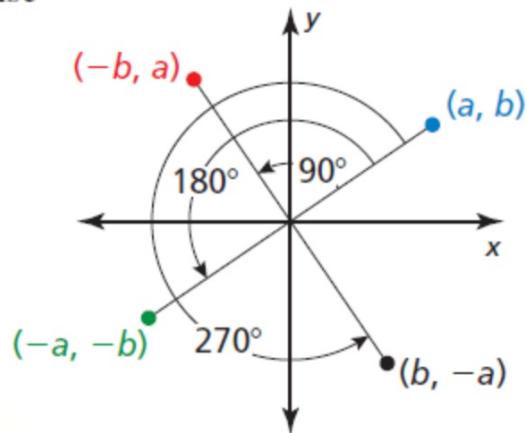



Date: 11/17/20

## Lesson 4.3 - Rotations in the Coordinate Plane

**Learning Intent (Target):** Today I will be able to  
graph polygons in the coordinate plane using  
transformations.

**Success Criteria:** I'll know I'll have it when I can accurately  
graph combinations of transformations, including rotations  
in the coordinate plane.


**Accountable Team Task:** I therefore, I can practice  
using interactive flip charts for notes & investigations using  
gizmos to graph transformations including rotations.

## Core Concept

### Coordinate Rules for Rotations about the Origin

When a point  $(a, b)$  is rotated counterclockwise about the origin, the following are true.

- For a rotation of  $90^\circ$ ,  
 $(a, b) \rightarrow (-b, a)$ .
- For a rotation of  $180^\circ$ ,  
 $(a, b) \rightarrow (-a, -b)$ .
- For a rotation of  $270^\circ$ ,  
 $(a, b) \rightarrow (b, -a)$ .



\*Rotations are rigid motion

\*Always Counter-Clockwise - unless stated

| TYPE OF ROTATION                                          | Point on the pre-image | Point on the image (After rotation) |
|-----------------------------------------------------------|------------------------|-------------------------------------|
| Rotation of $90^\circ$ (clock wise)                       | $(x, y)$               | $(y, -x)$                           |
| Rotation of $90^\circ$ (counter clock wise)               | $(x, y)$               | $(-y, x)$                           |
| Rotation of $180^\circ$ (clock wise & counter clock wise) | $(x, y)$               | $(-x, -y)$                          |
| Rotation of $270^\circ$ (clock wise)                      | $(x, y)$               | $(-y, x)$                           |
| Rotation of $270^\circ$ (counter clock wise)              | $(x, y)$               | $(y, -x)$                           |