

Date: 11/17/20

Lesson 4.3 - Rotations in the Coordinate Plane

Learning Intent (Target): Today I will be able to
graph polygons in the coordinate plane using
transformations.

Success Criteria: I'll know I'll have it when I can accurately
graph combinations of transformations, including rotations
in the coordinate plane.

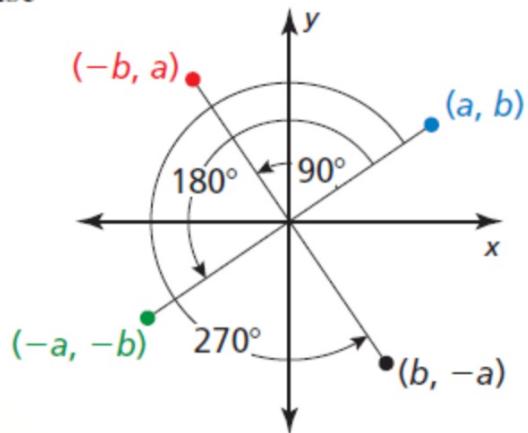
Accountable Team Task: I therefore, I can practice
using interactive flip charts for notes & investigations using
gizmos to graph transformations including rotations.

Core Concept

Coordinate Rules for Rotations about the Origin

When a point (a, b) is rotated counterclockwise about the origin, the following are true.

- For a rotation of 90° ,
 $(a, b) \rightarrow (-b, a)$.
- For a rotation of 180° ,
 $(a, b) \rightarrow (-a, -b)$.
- For a rotation of 270° ,
 $(a, b) \rightarrow (b, -a)$.



*Rotations are rigid motion

*Always Counter-Clockwise - unless stated

TYPE OF ROTATION	Point on the pre-image	Point on the image (After rotation)
Rotation of 90° (clock wise)	(x, y)	$(y, -x)$
Rotation of 90° (counter clock wise)	(x, y)	$(-y, x)$
Rotation of 180° (clock wise & counter clock wise)	(x, y)	$(-x, -y)$
Rotation of 270° (clock wise)	(x, y)	$(-y, x)$
Rotation of 270° (counter clock wise)	(x, y)	$(y, -x)$



Graph quadrilateral $RSTU$ with vertices $R(3, 1)$, $S(5, 1)$, $T(5, -3)$, and $U(2, -1)$ and its image after a 270° rotation about the origin.

SOLUTION

Use the coordinate rule for a 270° rotation to find the coordinates of the vertices of the image. Then graph quadrilateral $RSTU$ and its image.

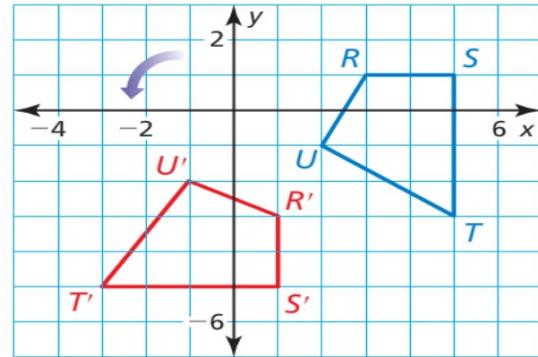
$$(a, b) \rightarrow (b, -a)$$

$$R(3, 1) \rightarrow R'(1, -3)$$

$$S(5, 1) \rightarrow S'(1, -5)$$

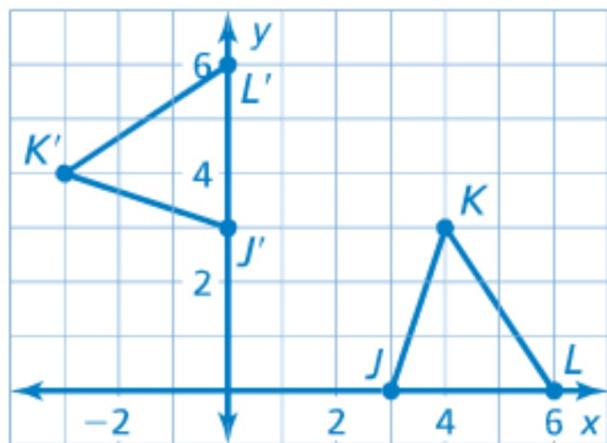
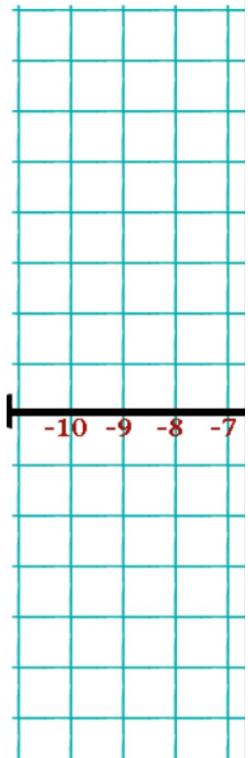
$$T(5, -3) \rightarrow T'(-3, -5)$$

$$U(2, -1) \rightarrow U'(-1, -2)$$



1. Graph $\triangle ABC$ with vertices $A(1, 1)$, $B(3, 1)$, and $C(2, 3)$ and its image after a 90° rotation about the origin.

2. Graph $\triangle JKL$ with vertices $J(3, 0)$, $K(4, 3)$, and $L(6, 0)$ and its image after a 90° rotation about the origin.



Graph \overline{RS} with endpoints $R(1, -3)$ and $S(2, -6)$ and its image after the composition.

Reflection: in the y -axis

Rotation: 90° about the origin

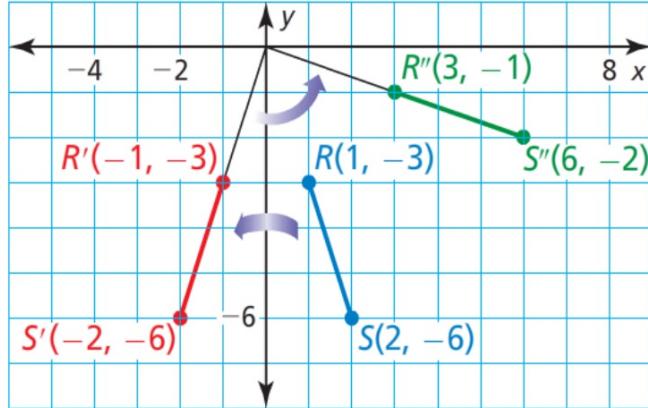
SOLUTION

Step 1 Graph \overline{RS} .

Step 2 Reflect \overline{RS} in the y -axis.

$R'S'$ has endpoints
 $R'(-1, -3)$ and $S'(-2, -6)$.

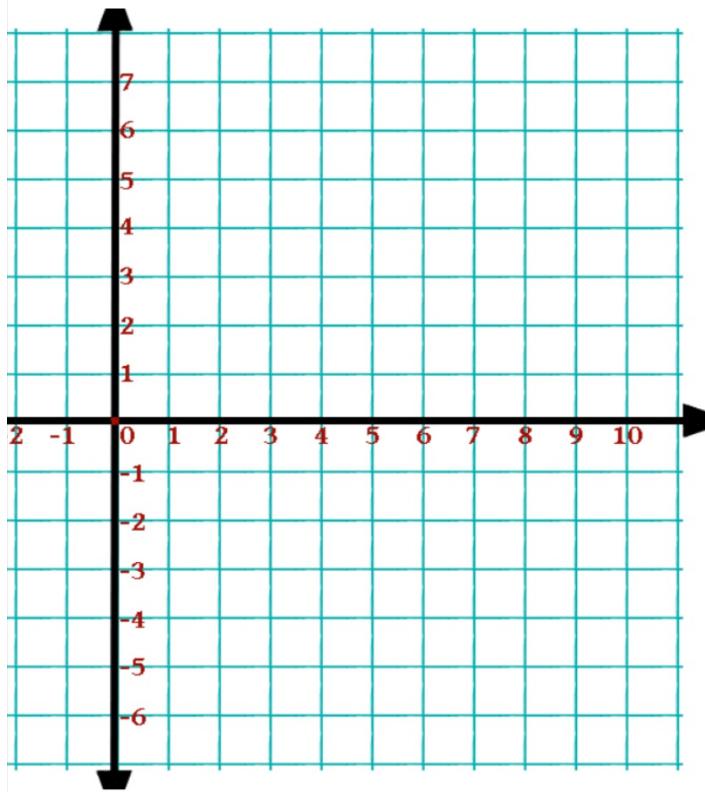
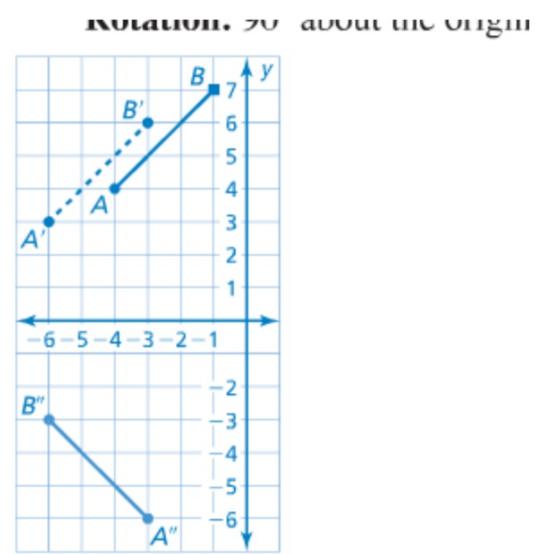
Step 3 Rotate $\overline{R'S'}$ 90° about the origin. $R''S''$ has endpoints
 $R''(3, -1)$ and $S''(6, -2)$.



5. Graph \overline{AB} with endpoints $A(-4, 4)$ and $B(-1, 7)$ and its image after the composition.

Translation: $(x, y) \rightarrow (x - 2, y - 1)$

Rotation: 90° about the origin



6. Graph $\triangle TUV$ with vertices $T(1, 2)$, $U(3, 5)$, and $V(6, 3)$ and its image after the composition.

Rotation: 180° about the origin

Reflection: in the x -axis

