

Date: 11/30/20

Lesson 4.5 - Dilations in the Coordinate Plane

Learning Intent (Target): Today I will be able to
graph polygons in the coordinate plane using
transformations.

Success Criteria: I'll know I'll have it when I can accurately
graph dilations in the coordinate plane and determine the scale
factor.

Accountable Team Task: I therefore, I can practice
using interactive flip charts for notes & investigations using
gizmos to graph transformations and determine scale factors.

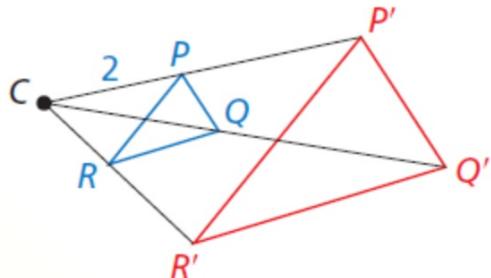
Core Concept

Dilations

A **dilation** is a transformation in which a figure is enlarged or reduced with respect to a fixed point C called the **center of dilation** and a **scale factor** k , which is the ratio of the lengths of the corresponding sides of the image and the preimage.

A dilation with center of dilation C and scale factor k maps every point P in a figure to a point P' so that the following are true.

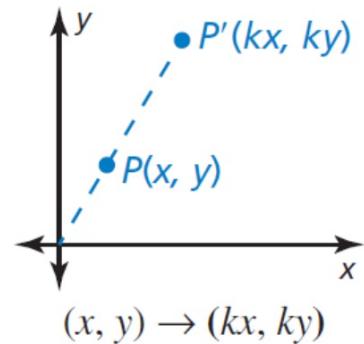
- If P is the center point C , then $P = P'$.
- If P is not the center point C , then the image point P' lies on \overrightarrow{CP} . The scale factor k is a positive number such that $k = \frac{CP'}{CP}$.
- Angle measures are preserved.



Core Concept

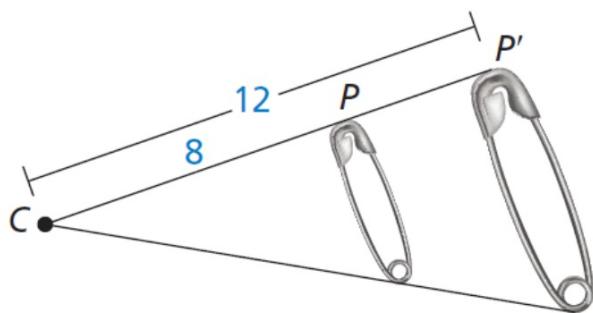
Coordinate Rule for Dilations

If $P(x, y)$ is the preimage of a point, then its image after a dilation centered at the origin $(0, 0)$ with scale factor k is the point $P'(kx, ky)$.

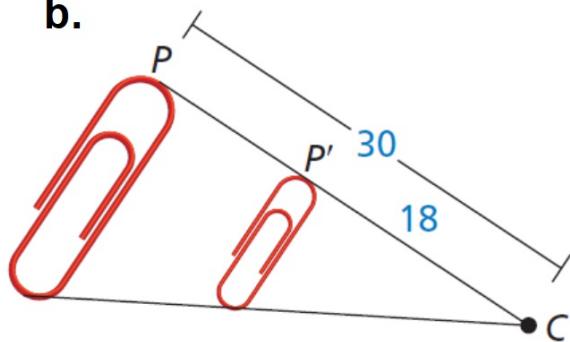


Find the scale factor of the dilation. Then tell whether the dilation is a *reduction* or an *enlargement*.

a.



b.



SOLUTION

a. Because $\frac{CP'}{CP} = \frac{12}{8}$, the scale factor is $k = \frac{3}{2}$. So, the dilation is an enlargement.

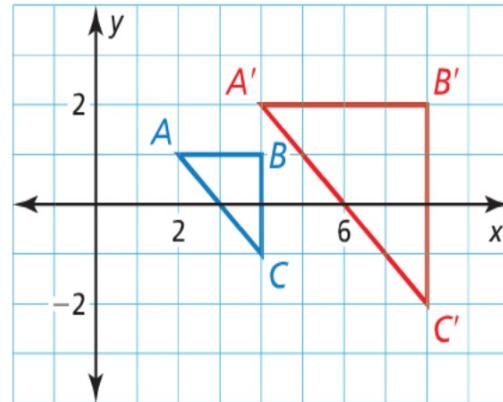
b. Because $\frac{CP'}{CP} = \frac{18}{30}$, the scale factor is $k = \frac{3}{5}$. So, the dilation is a reduction.

Graph $\triangle ABC$ with vertices $A(2, 1)$, $B(4, 1)$, and $C(4, -1)$ and its image after a dilation with a scale factor of 2.

SOLUTION

Use the coordinate rule for a dilation with $k = 2$ to find the coordinates of the vertices of the image. Then graph $\triangle ABC$ and its image.

$$\begin{aligned}(x, y) &\rightarrow (2x, 2y) \\ A(2, 1) &\rightarrow A'(4, 2) \\ B(4, 1) &\rightarrow B'(8, 2) \\ C(4, -1) &\rightarrow C'(8, -2)\end{aligned}$$



Graph quadrilateral $KLMN$ with vertices $K(-3, 6)$, $L(0, 6)$, $M(3, 3)$, and $N(-3, -3)$ and its image after a dilation with a scale factor of $\frac{1}{3}$.

SOLUTION

Use the coordinate rule for a dilation with $k = \frac{1}{3}$ to find the coordinates of the vertices of the image.

Then graph quadrilateral $KLMN$ and its image.

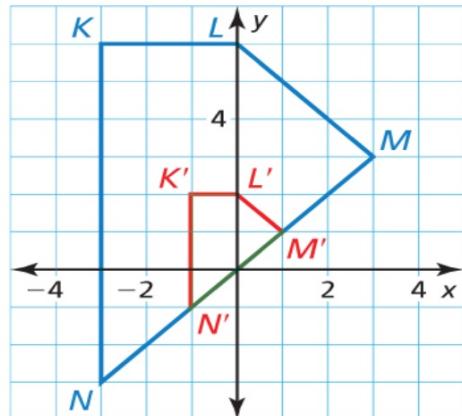
$$(x, y) \rightarrow \left(\frac{1}{3}x, \frac{1}{3}y\right)$$

$$K(-3, 6) \rightarrow K'(-1, 2)$$

$$L(0, 6) \rightarrow L'(0, 2)$$

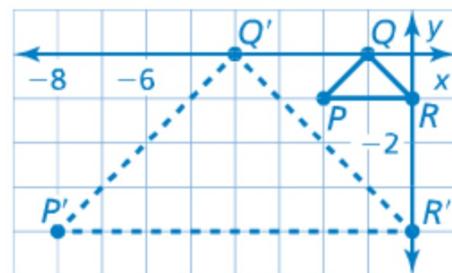
$$M(3, 3) \rightarrow M'(1, 1)$$

$$N(-3, -3) \rightarrow N'(-1, -1)$$

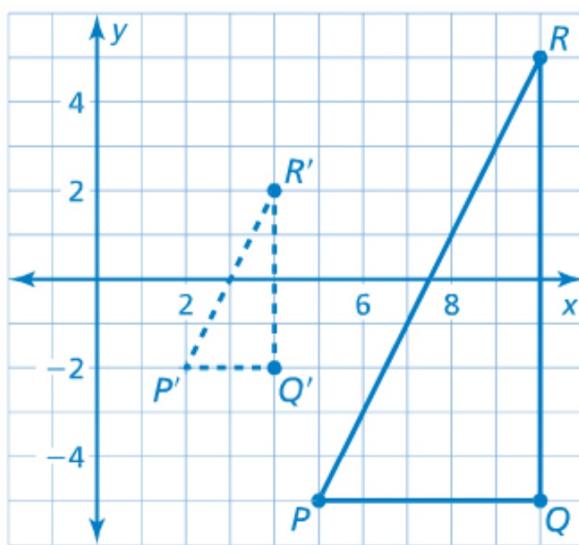


Graph $\triangle PQR$ and its image after a dilation with scale factor k .

2. $P(-2, -1)$, $Q(-1, 0)$, $R(0, -1)$; $k = 4$



3. $P(5, -5)$, $Q(10, -5)$, $R(10, 5)$; $k = 0.4$



Graph $\triangle FGH$ with vertices $F(-4, -2)$, $G(-2, 4)$, and $H(-2, -2)$ and its image after a dilation with a scale factor of $-\frac{1}{2}$.

SOLUTION

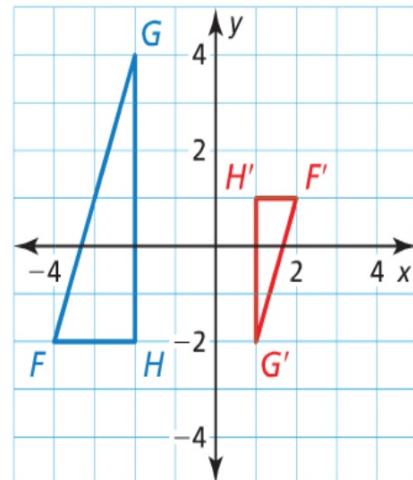
Use the coordinate rule for a dilation with $k = -\frac{1}{2}$ to find the coordinates of the vertices of the image. Then graph $\triangle FGH$ and its image.

$$(x, y) \rightarrow \left(-\frac{1}{2}x, -\frac{1}{2}y\right)$$

$$F(-4, -2) \rightarrow F'(2, 1)$$

$$G(-2, 4) \rightarrow G'(1, -2)$$

$$H(-2, -2) \rightarrow H'(1, 1)$$



4. Graph $\triangle PQR$ with vertices $P(1, 2)$, $Q(3, 1)$, and $R(1, -3)$ and its image after a dilation with a scale factor of -2 .

