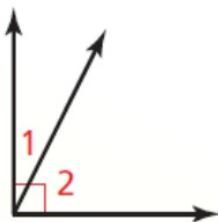


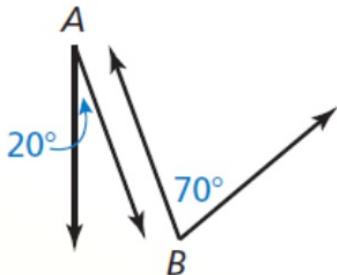
Date: 10/7/20

Lesson 1.6 Describing Pairs of Angles

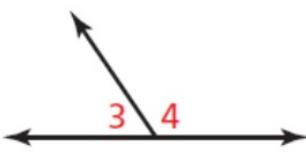
Learning Intent (Target): Today I will be able to describe and identify types of angles.


Success Criteria: I'll know I'll have it when I'll be able to determine angle measures of complementary and supplementary angles. Identify the difference between vertical & linear pairs of angles.

Accountable Team Task: Therefore, I can practice using postulates from interactive flip charts and apply it to problem solving.

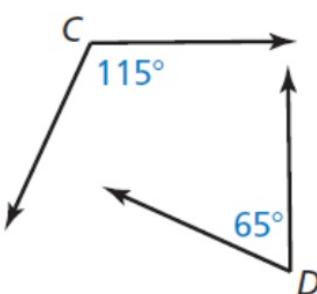

Core Concept

Complementary and Supplementary Angles



$\angle 1$ and $\angle 2$

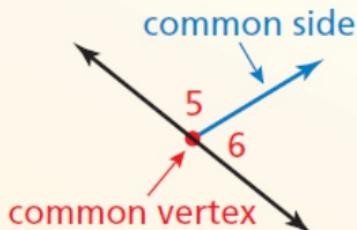
complementary angles



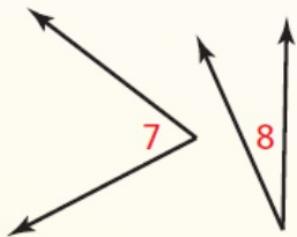
$\angle A$ and $\angle B$

$\angle 3$ and $\angle 4$

supplementary angles


$\angle C$ and $\angle D$

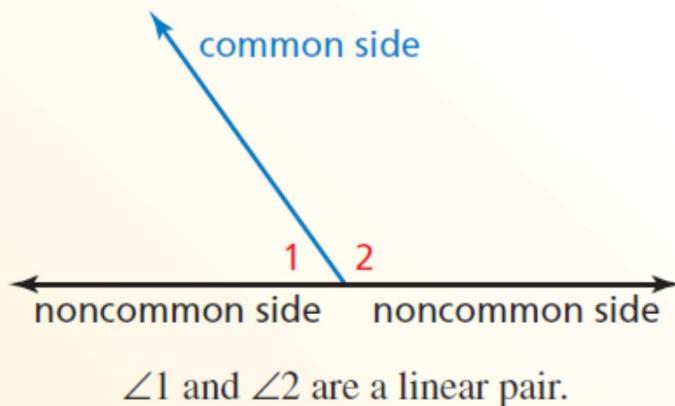
Two positive angles whose measures have a sum of 90° . Each angle is the *complement* of the other.


Two positive angles whose measures have a sum of 180° . Each angle is the *supplement* of the other.

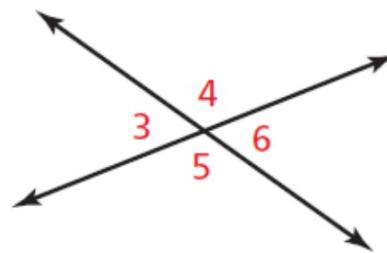
Adjacent Angles

Complementary angles and supplementary angles can be *adjacent angles* or *nonadjacent angles*. **Adjacent angles** are two angles that share a common vertex and side, but have no common interior points.

$\angle 5$ and $\angle 6$ are adjacent angles.

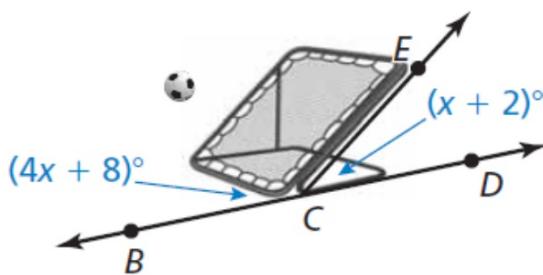


$\angle 7$ and $\angle 8$ are nonadjacent angles.


Core Concept

Linear Pairs and Vertical Angles

Two adjacent angles are a **linear pair** when their noncommon sides are opposite rays. The angles in a linear pair are supplementary angles.



Two angles are **vertical angles** when their sides form two pairs of opposite rays.

$\angle 3$ and $\angle 6$ are vertical angles.
 $\angle 4$ and $\angle 5$ are vertical angles.

When viewed from the side, the frame of a ball-return net forms a pair of supplementary angles with the ground. Find $m \angle BCE$ and $m \angle ECD$.

Step 1 Use the fact that the sum of the measures of supplementary angles is 180° .

$$m\angle BCE + m\angle ECD = 180^\circ \quad \text{Write an equation.}$$

$$(4x + 8)^\circ + (x + 2)^\circ = 180^\circ \quad \text{Substitute angle measures.}$$

$$5x + 10 = 180 \quad \text{Combine like terms.}$$

$$x = 34 \quad \text{Solve for } x.$$

Step 2 Evaluate the given expressions when $x = 34$.

$$m\angle BCE = (4x + 8)^\circ = (4 \cdot 34 + 8)^\circ = 144^\circ$$

$$m\angle ECD = (x + 2)^\circ = (34 + 2)^\circ = 36^\circ$$

► So, $m\angle BCE = 144^\circ$ and $m\angle ECD = 36^\circ$.

5. $\angle LMN$ and $\angle PQR$ are complementary angles. Find the measures of the angles when $m \angle LMN = (4x - 2)^\circ$ and $m \angle PQR = (9x + 1)^\circ$.

$$m\angle LMN = 26^\circ; m\angle PQR = 64^\circ$$

