

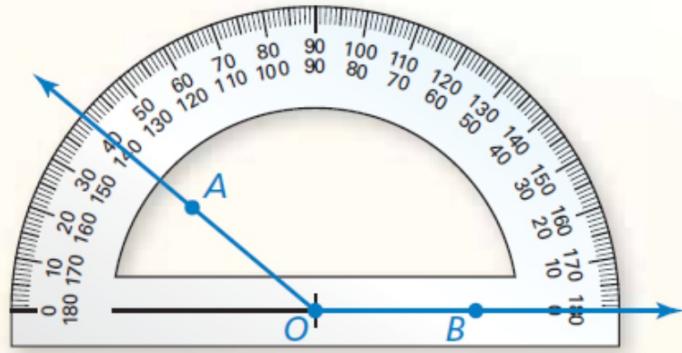
Date: 10/6/20

Lesson 1.5 Measuring and Constructing Angles

Learning Intent (Target): *Today I will be able to measure and classify angles.*

Success Criteria: *I'll know I'll have it when I'll be able to use the angle addition postulate to determine angle measures.*

Accountable Team Task: *Therefore, I can practice using postulates from interactive flip charts and apply it to problem solving.*

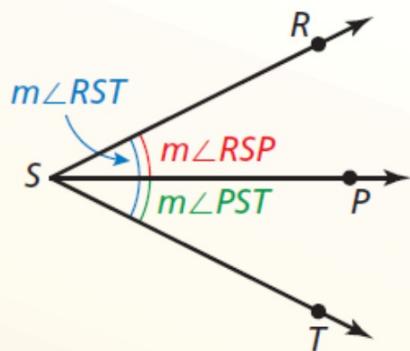


Postulate

Postulate 1.3 Protractor Postulate

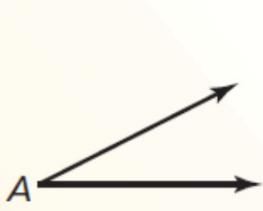
Consider \overleftrightarrow{OB} and a point A on one side of \overleftrightarrow{OB} . The rays of the form \overrightarrow{OA} can be matched one to one with the real numbers from 0 to 180.

The **measure** of $\angle AOB$, which can be written as $m\angle AOB$, is equal to the absolute value of the difference between the real numbers matched with \overrightarrow{OA} and \overrightarrow{OB} on a protractor.

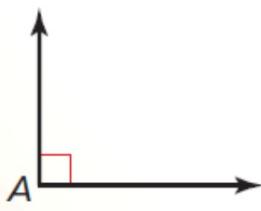

Postulate

Postulate 1.4 Angle Addition Postulate

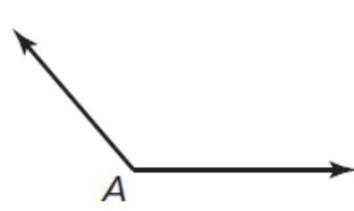
Words If P is in the interior of $\angle RST$, then the measure of $\angle RST$ is equal to the sum of the measures of $\angle RSP$ and $\angle PST$.


Symbols If P is in the interior of $\angle RST$, then

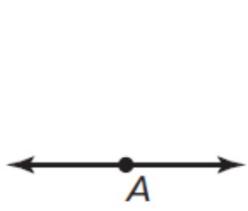
$$m\angle RST = m\angle RSP + m\angle PST.$$


Core Concept

Types of Angles


acute angle

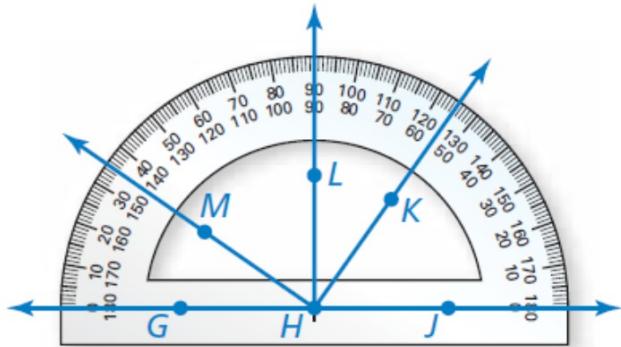
Measures greater than 0° and less than 90°


right angle

Measures 90°

obtuse angle

Measures greater than 90° and less than 180°



straight angle

Measures 180°

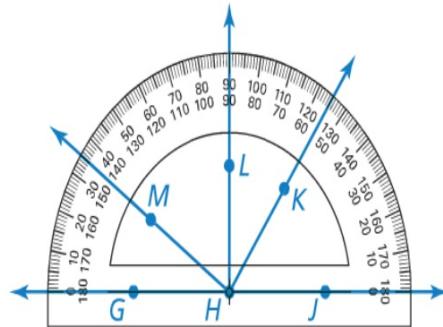
Find the measure of each angle.
Then classify each angle.

a. $\angle GHK$

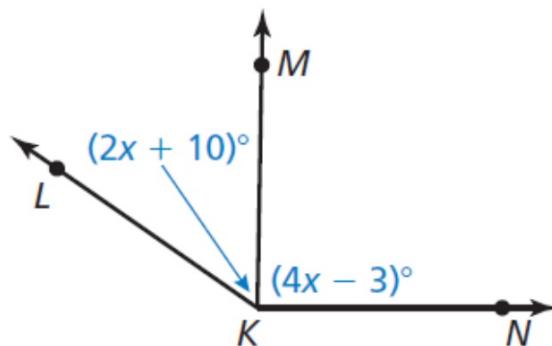
b. $\angle JHL$

Find the measure of each angle.
Then classify each angle.

- a. $\angle GHK$ b. $\angle JHL$ c. $\angle LHK$


c. $\angle LHK$

SOLUTION


a. \overrightarrow{HG} lines up with 0° on the outer scale of the protractor. \overrightarrow{HK} passes through 125° on the outer scale. So, $m\angle GHK = 125^\circ$. It is an *obtuse* angle.

b. \overrightarrow{HJ} lines up with 0° on the inner scale of the protractor. \overrightarrow{HL} passes through 90° . So, $m\angle JHL = 90^\circ$. It is a *right* angle.

c. \overrightarrow{HL} passes through 90° . \overrightarrow{HK} passes through 55° on the inner scale. So, $m\angle LHK = |90 - 55| = 35^\circ$. It is an *acute* angle.

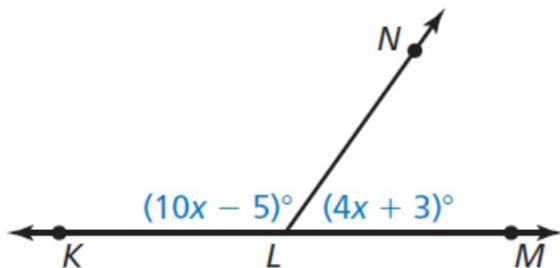
Given that $m \angle LKN = 145^\circ$, find $m \angle LKM$ and $m \angle MKN$.

SOLUTION

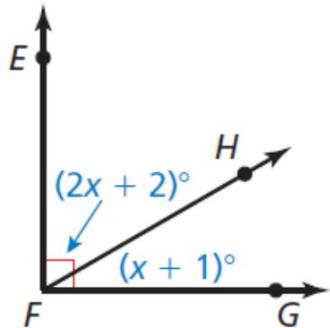
Step 1 Write and solve an equation to find the value of x .

$$\begin{aligned} m\angle LKN &= m\angle LKM + m\angle MKN && \text{Angle Addition Postulate} \\ 145^\circ &= (2x + 10)^\circ + (4x - 3)^\circ && \text{Substitute angle measures.} \\ 145 &= 6x + 7 && \text{Combine like terms.} \\ 138 &= 6x && \text{Subtract 7 from each side.} \\ 23 &= x && \text{Divide each side by 6.} \end{aligned}$$

Step 2 Evaluate the given expressions when $x = 23$.


$$m\angle LKM = (2x + 10)^\circ = (2 \cdot 23 + 10)^\circ = 56^\circ$$

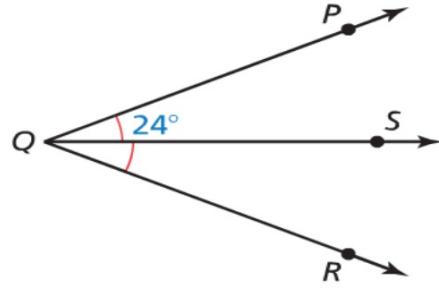
$$m\angle MKN = (4x - 3)^\circ = (4 \cdot 23 - 3)^\circ = 89^\circ$$


► So, $m\angle LKM = 56^\circ$, and $m\angle MKN = 89^\circ$.

Find the indicated angle measures.

8. Given that $\angle KLM$ is a straight angle, find $m \angle KLN$ and $m \angle NLM$.

9. Given that $\angle EFG$ is a right angle, find $m \angle EFH$ and $m \angle HFG$.


8. Given that $\angle KLM$ is a straight angle, find $m \angle KLN$ and $m \angle NLM$. $125^\circ, 55^\circ$

9. Given that $\angle EFG$ is a right angle, find $m \angle EFH$ and $m \angle HFG$. $60^\circ, 30^\circ$

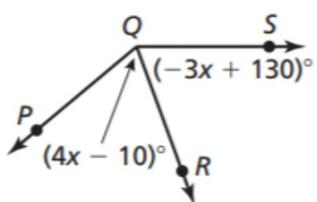
\overrightarrow{QS} bisects $\angle PQR$, and $m \angle PQS = 24^\circ$. Find $m \angle PQR$.

SOLUTION

Step 1 Draw a diagram.

Step 2 Because \overrightarrow{QS} bisects $\angle PQR$,
 $m \angle PQS = m \angle RQS$. So, $m \angle RQS = 24^\circ$.
Use the Angle Addition Postulate to
find $m \angle PQR$.

$$\begin{aligned}m \angle PQR &= m \angle PQS + m \angle RQS \\&= 24^\circ + 24^\circ \\&= 48^\circ\end{aligned}$$


Angle Addition Postulate
Substitute angle measures.
Add.

► So, $m \angle PQR = 48^\circ$.

9. \overline{QR} bisects $\angle PQS$.

Find $m\angle PQR$ and $m\angle PQS$.

$$\begin{array}{r} -3x + 130 = 4x - 10 \\ +3x \quad \quad \quad +3x \\ \hline 130 = 7x - 10 \end{array}$$

$$\begin{array}{r} 130 = 7x \\ +10 \quad \quad +10 \\ \hline 140 = 7x \end{array}$$

$$20 = x$$

Next substitute in 20 for x for each angle

$$4(20) - 10 = 80 - 10 = 70 \text{ for angle PQR}$$

$$-3(20) + 130 = -60 + 130 = 70 \text{ for angle SQR}$$

$$\text{the entire angle PQS} = 70 + 70 = 140$$