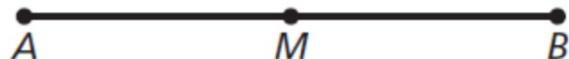


1. Six steps of a two-column proof are shown. Copy and complete the proof.

Given T is the midpoint of \overline{SU} .

Prove $x = 5$



STATEMENTS	REASONS
1. T is the midpoint of \overline{SU} .	1. <u>Given</u>
2. $\overline{ST} \cong \overline{TU}$	2. Definition of midpoint
3. $ST = TU$	3. Definition of congruent segments
4. $7x = 3x + 20$	4. <u>Substitution Property</u>
5. <u>$4x = 20$</u>	5. Subtraction Property of Equality
6. $x = 5$	6. <u>Division Property</u>

Prove this property of midpoints: If you know that M is the midpoint of \overline{AB} , prove that AB is two times AM and AM is one-half AB .

Given M is the midpoint of \overline{AB} .

Prove $AB = 2AM$, $AM = \frac{1}{2}AB$

STATEMENTS

1. M is the midpoint of \overline{AB} .
2. $\overline{AM} \cong \overline{MB}$
3. $AM = MB$
4. $AM + MB = AB$
5. $AM + AM = AB$
6. $2AM = AB$
7. $AM = \frac{1}{2}AB$

REASONS

1. Given
2. Definition of midpoint
3. Definition of congruent segments
4. Segment Addition Postulate (Reason 1 and 2)
5. Substitution Property of Equality
6. Distributive Property
7. Division Property of Equality