

Name the property of equality that the statement illustrates.

7. If $m \angle 6 = m \angle 7$, then $m \angle 7 = m \angle 6$.

8. $34^\circ = 34^\circ$

9. $m \angle 1 = m \angle 2$ and $m \angle 2 = m \angle 5$. So, $m \angle 1 = m \angle 5$.

Name the property of equality that the statement illustrates.

7. If $m\angle 6 = m\angle 7$, then $m\angle 7 = m\angle 6$.

[Symmetric Property of Equality](#)

8. $34^\circ = 34^\circ$

[Reflexive Property of Equality](#)

9. $m\angle 1 = m\angle 2$ and $m\angle 2 = m\angle 5$. So, $m\angle 1 = m\angle 5$.

[Transitive Property of Equality](#)

[Hide Answers](#)

Name the property of equality that the statement illustrates.

10. If $JK = KL$ and $KL = 16$, then $JK = 16$.

11. $PQ = ST$, so $ST = PQ$.

12. $ZY = ZY$

10. If $JK = KL$ and $KL = 16$, then $JK = 16$. [Transitive Property of Equality](#)

11. $PQ = ST$, so $ST = PQ$. [Symmetric Property of Equality](#)

12. $ZY = ZY$ [Reflexive Property of Equality](#)

State the Property of Equality each statement illustrates.

- a.** If $AB = CD$, then $AB + FE = CD + FE$.
- b.** If $m \angle 2 = m \angle 4$ and $m \angle 4 = m \angle 6$, then $m \angle 2 = m \angle 6$.
- c.** If $XY = AB$, then $AB = XY$.

- a.** If $AB = CD$, then $AB + FE = CD + FE$.

Addition Property of Equality

- b.** If $m \angle 2 = m \angle 4$ and $m \angle 4 = m \angle 6$, then $m \angle 2 = m \angle 6$.

Transitive Property of Equality

- c.** If $XY = AB$, then $AB = XY$.

Symmetric Property of Equality

Solve the equation. Justify each step.

$$5. \ 4 = -10b + 6(2 - b)$$

6. Solve the formula $A = \frac{1}{2}bh$ for b . Justify each step. Then find the

base of a triangle whose area is 952 square feet and whose height is 56 feet.

$$5. \ 4 = -10b + 6(2 - b)$$

Equation

$$4 = -10b + 6(2 - b)$$

Explanation and Reason

Write the equation; Given

$$4 = -10b + 12 - 6b$$

Multiply; Distributive Property

$$4 = -16b + 12$$

Combine like terms; Simplify.

$$-8 = -16b$$

Subtract 12 from each side;

Subtraction Property of Equality

$$\frac{1}{2} = b$$

Divide each side by -16 ;

Division Property of Equality

$$b = \frac{1}{2}$$

Rewrite the equation; Symmetric

Property of Equality

6. Solve the formula $A = \frac{1}{2}bh$ for b . Justify each step. Then find the base of a triangle whose area is 952 square feet and whose height is 56 feet.

Equation **Explanation and Reason**

$$A = \frac{1}{2}bh$$

Write the equation; Given

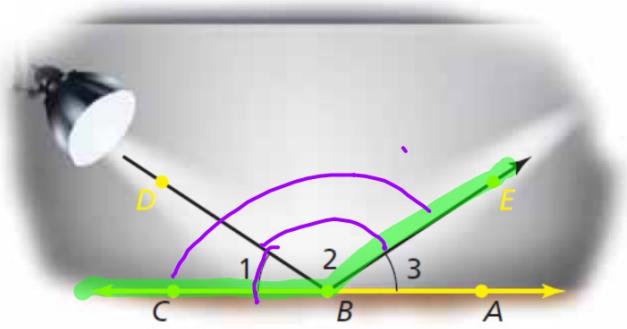
$$2A = bh$$

Multiply each side by 2; Multiplication Property of Equality

$$\frac{2A}{h} = b$$

Divide each side by h ; Division Property of Equality

$$b = \frac{2A}{h}$$


Rewrite the equation; Symmetric Property of Equality

$$b = 34 \text{ feet}$$

You reflect the beam of a spotlight off a mirror lying flat on a stage, as shown. Determine whether $m\angle DBA = m\angle EBC$.

SOLUTION

Equation	Explanation	Reason
$m\angle 1 = m\angle 3$	Marked in diagram.	Given
$m\angle DBA = m\angle 3 + m\angle 2$	Add measures of adjacent angles.	Angle Addition Postulate (Post. 1.4)
$m\angle DBA = m\angle 1 + m\angle 2$	Substitute $m\angle 1$ for $m\angle 3$.	Substitution Property of Equality
$m\angle 1 + m\angle 2 = m\angle EBC$	Add measures of adjacent angles.	Angle Addition Postulate (Post. 1.4)
$m\angle DBA = m\angle EBC$	Both measures are equal to the sum $m\angle 1 + m\angle 2$.	Transitive Property of Equality

