

Date: 10/21/20

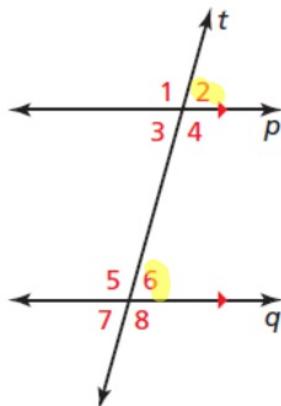
## Lesson 3.2 Parallel Lines & Transversals

**Learning Intent (Target):** Today I will be able to use properties of parallel lines. Prove theorems about parallel lines.

**Success Criteria:** I'll know I'll have it when I'll be able to use theorems about parallel lines & transversals to determine missing angle measures.

**Accountable Team Task:** Therefore, I can practice from interactive flip charts and apply it to problem solving.

## \*Color Code Congruent Angles


### G Theorems

#### Theorem 3.1 Corresponding Angles Theorem

If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.

**Examples** In the diagram at the left,  $\angle 2 \cong \angle 6$  and  $\angle 3 \cong \angle 7$ .

*Proof* Ex. 36, p. 180



#### Theorem 3.2 Alternate Interior Angles Theorem

If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.

**Examples** In the diagram at the left,  $\angle 3 \cong \angle 6$  and  $\angle 4 \cong \angle 5$ .

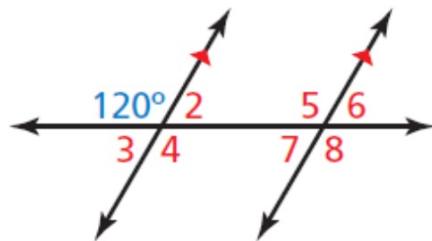
*Proof* Example 4, p. 134

#### Theorem 3.3 Alternate Exterior Angles Theorem

If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.

**Examples** In the diagram at the left,  $\angle 1 \cong \angle 8$  and  $\angle 2 \cong \angle 7$ .

*Proof* Ex. 15, p. 136


#### Theorem 3.4 Consecutive Interior Angles Theorem

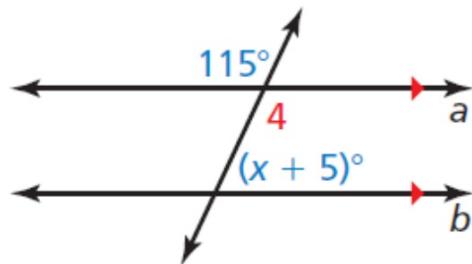
If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.

**Examples** In the diagram at the left,  $\angle 3$  and  $\angle 5$  are supplementary, and  $\angle 4$  and  $\angle 6$  are supplementary.

*Proof* Ex. 16, p. 136

The measures of three of the numbered angles are  $120^\circ$ . Identify the angles. Explain your reasoning.




By the Alternate Exterior Angles Theorem,  $m\angle 8 = 120^\circ$ .

$\angle 5$  and  $\angle 8$  are vertical angles. Using the Vertical Angles Congruence Theorem (Theorem 2.6),  $m\angle 5 = 120^\circ$ .

$\angle 5$  and  $\angle 4$  are alternate interior angles. By the Alternate Interior Angles Theorem,  $\angle 4 = 120^\circ$ .

► So, the three angles that each have a measure of  $120^\circ$  are  $\angle 4$ ,  $\angle 5$ , and  $\angle 8$ .

Find the value of  $x$ .



### SOLUTION

By the Vertical Angles Congruence Theorem (Theorem 2.6),  $m\angle 4 = 115^\circ$ . Lines  $a$  and  $b$  are parallel, so you can use the theorems about parallel lines.

#### Check

$$115^\circ + (x + 5)^\circ = 180^\circ$$

$$115 + (60 + 5) \stackrel{?}{=} 180$$

$$180 = 180 \checkmark$$

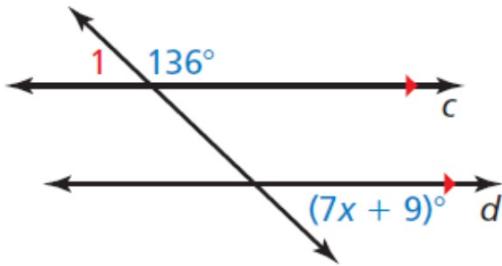
$$m\angle 4 + (x + 5)^\circ = 180^\circ$$

$$115^\circ + (x + 5)^\circ = 180^\circ$$

$$x + 120 = 180$$

$$x = 60$$

Consecutive Interior Angles Theorem


Substitute  $115^\circ$  for  $m\angle 4$ .

Combine like terms.

Subtract 120 from each side.

► So, the value of  $x$  is 60.

Find the value of  $x$ .



### SOLUTION

By the Linear Pair Postulate (Postulate 2.8),  $m\angle 1 = 180^\circ - 136^\circ = 44^\circ$ . Lines  $c$  and  $d$  are parallel, so you can use the theorems about parallel lines.

#### Check

$$44^\circ = (7x + 9)^\circ$$

$$44 = 7(5) + 9$$

$$44 = 44 \quad \checkmark$$

$$m\angle 1 = (7x + 9)^\circ$$

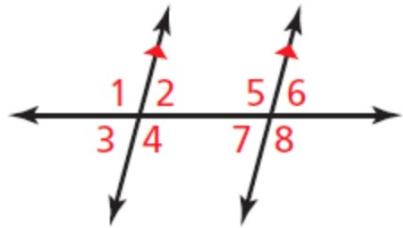
$$44^\circ = (7x + 9)^\circ$$

$$35 = 7x$$

$$5 = x$$

Alternate Exterior Angles Theorem

Substitute  $44^\circ$  for  $m\angle 1$ .


Subtract 9 from each side.

Divide each side by 7.

► So, the value of  $x$  is 5.

### Use the diagram.

1. Given  $m\angle 1 = 105^\circ$ , find  $m\angle 4$ ,  $m\angle 5$ , and  $m\angle 8$ . Tell which theorem you use in each case.



2. Given  $m\angle 3 = 68^\circ$  and  $m\angle 8 = (2x + 4)^\circ$ , what is the value of  $x$ ? Show your steps.

1. Given  $m\angle 1 = 105^\circ$ , find  $m\angle 4$ ,  $m\angle 5$ , and  $m\angle 8$ . Tell which theorem you use in each case.

$m\angle 4 = 105^\circ$  by Vertical Angles

Congruence Theorem (Thm. 2.6);

$m\angle 5 = 105^\circ$  by Corresponding

Angles Theorem (Thm. 3.1);

$m\angle 8 = 105^\circ$  by Alternate Exterior

Angles Theorem (Thm. 3.3)

2. Given  $m\angle 3 = 68^\circ$  and  $m\angle 8 = (2x + 4)^\circ$ , what is the value of  $x$ ? Show your steps.

$$54; m\angle 7 = m\angle 3$$

$$m\angle 3 + m\angle 8 = 180^\circ$$

$$68^\circ + (2x + 4)^\circ = 180^\circ$$

$$2x + 72 = 180$$

$$2x = 108$$

$$x = 54$$