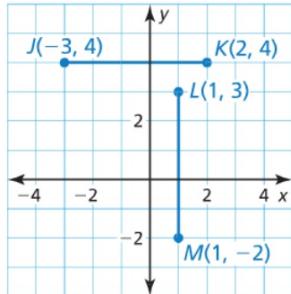


Plot $J(-3, 4)$, $K(2, 4)$, $L(1, 3)$, and $M(1, -2)$ in a coordinate plane.

Then determine whether \overline{JK} and \overline{LM} are congruent.

Plot $J(-3, 4)$, $K(2, 4)$, $L(1, 3)$, and $M(1, -2)$ in a coordinate plane. Then determine whether \overline{JK} and \overline{LM} are congruent.

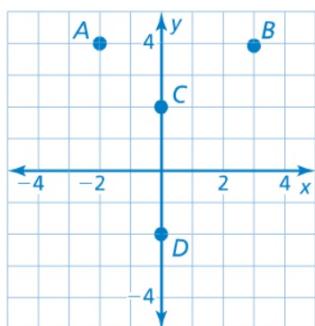
SOLUTION


Plot the points, as shown. To find the length of a horizontal segment, find the absolute value of the difference of the x -coordinates of the endpoints.

$$JK = |2 - (-3)| = 5 \quad \text{Ruler Postulate}$$

To find the length of a vertical segment, find the absolute value of the difference of the y -coordinates of the endpoints.

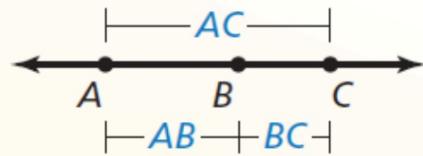
$$LM = |-2 - 3| = 5 \quad \text{Ruler Postulate}$$


► \overline{JK} and \overline{LM} have the same length. So, $\overline{JK} \cong \overline{LM}$.

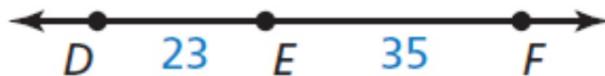
5. Plot $A(-2, 4)$, $B(3, 4)$, $C(0, 2)$, and $D(0, -2)$ in a coordinate plane.

Then determine whether \overline{AB} and \overline{CD} are congruent.

5. Plot $A(-2, 4)$, $B(3, 4)$, $C(0, 2)$, and $D(0, -2)$ in a coordinate plane. Then determine whether AB and CD are congruent.


no

Postulate


Postulate 1.2 Segment Addition Postulate

If B is between A and C , then $AB + BC = AC$.

If $AB + BC = AC$, then B is between A and C .

a. Find DF .

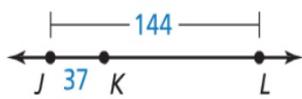
b. Find GH .

SOLUTION

a. Use the Segment Addition Postulate to write an equation. Then solve the equation to find DF .

$$DF = DE + EF \quad \text{Segment Addition Postulate}$$

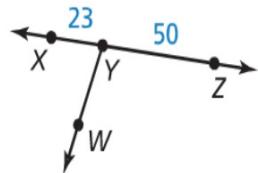
$$DF = 23 + 35 \quad \text{Substitute 23 for } DE \text{ and 35 for } EF.$$


$$DF = 58 \quad \text{Add.}$$

b. Use the Segment Addition Postulate to write an equation. Then solve the equation to find GH .

$$FH = FG + GH \quad \text{Segment Addition Postulate}$$

$$36 = 21 + GH \quad \text{Substitute 36 for } FH \text{ and 21 for } FG.$$


$$15 = GH \quad \text{Subtract 21 from each side.}$$


Use the diagram at the right.

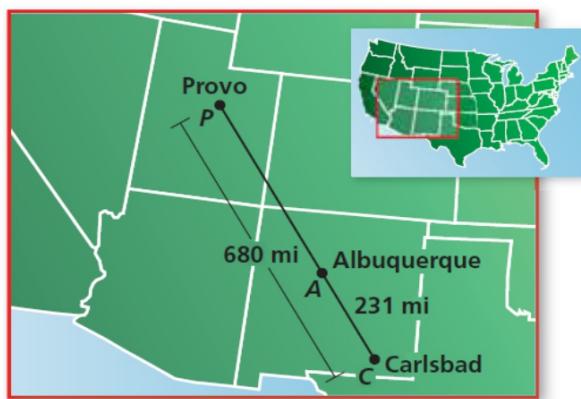
6. Use the Segment Addition Postulate to find XZ . [73](#)
7. In the diagram, $WY = 30$. Can you use the Segment Addition Postulate to find the distance between points W and Z ? Explain your reasoning.
no; Point Y is not between points W and Z.
8. Use the diagram at the left to find KL . [107](#)

[Hide Answers](#)

The cities shown on the map lie approximately in a straight line. Find the distance from Tulsa, Oklahoma, to St. Louis, Missouri.

SOLUTION

- Understand the Problem** You are given the distance from Lubbock to St. Louis and the distance from Lubbock to Tulsa. You need to find the distance from Tulsa to St. Louis.
- Make a Plan** Use the Segment Addition Postulate to find the distance from Tulsa to St. Louis.
- Solve the Problem** Use the Segment Addition Postulate to write an equation. Then solve the equation to find TS .


$$\begin{array}{ll} LS = LT + TS & \text{Segment Addition Postulate} \\ 738 = 377 + TS & \text{Substitute 738 for } LS \text{ and 377 for } LT. \\ 361 = TS & \text{Subtract 377 from each side.} \end{array}$$

► So, the distance from Tulsa to St. Louis is about 361 miles.

- Look Back** Does the answer make sense in the context of the problem? The distance from Lubbock to St. Louis is 738 miles. By the Segment Addition Postulate, the distance from Lubbock to Tulsa plus the distance from Tulsa to St. Louis should equal 738 miles.

$$377 + 361 = 738 \checkmark$$

9. The cities shown on the map lie approximately in a straight line. Find the distance from Albuquerque, New Mexico, to Provo, Utah.

449 mi